How to plot the error of two numerical methods on the same graph?
    4 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
I'm trying to plot the error of two methods, but I got the following error
Index exceeds the number of array elements (3)
Also, How can I plot the error of the two methods on the same graph?
function xnew = newtonmethod(f,df,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
%% Newton code
disp('No Itr     Solution    Error  ')
Error=[];
for i=1:n
    xnew=x0-(f(x0)/df(x0));
    err=abs(xnew-x0);
    fprintf('%3i %11.4f  %11.4f %11.4f\n',i,x0,err);
    if (err<tol)
        break
    end
    x0=xnew;
    Error=[Error;err];
end
%% Graph
plot(1:i,Error(1:i),'r-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %% 2nd method
 function xnewh = Hmethod(f,df,ddf,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
ddf=@(x) -4.5*sin(x);
x0=1;
tol=0.0001;
n=50;
%% code
disp('No Itr     Solution    Errorh')
Errorh=[];
for i=1:n
    xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
    errh=abs(xnewh-x0);
    fprintf('%3i %11.4f  %11.4f\n',i,x0,errh);
    if (errh<tol)
        break
    end
    x0=xnewh;
    Errorh=[Errorh;errh];
end
%% Graph
plot(1:i,Errorh(1:i),'b-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%    
0 commentaires
Réponse acceptée
  Star Strider
      
      
 le 16 Fév 2024
        I cannot run your code because I do not have arguments for the functions.  (I tweaked them to make them a bit more efficient.)  
Plotting both results in the same axes is relativbely straightforward.  
Example (using different functions) — 
figure
plot1
hold on
plot2
hold off
grid
function plot1
plot((0:0.1:5), sin((0:0.1:5)*pi))
end
function plot2
plot((0:0.1:5), cos((0:0.1:5)*pi))
end
% 
% 
% function xnew = newtonmethod(f,df,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% x0=1;
% tol=0.0001;
% n=50;
% %% Newton code
% disp('No Itr     Solution    Error  ')
% Error=zeros(1,n);
% for i=1:n
%     xnew=x0-(f(x0)/df(x0));
%     err=abs(xnew-x0);
%     fprintf('%3i %11.4f  %11.4f %11.4f\n',i,x0,err);
%     if (err<tol)
%         break
%     end
%     x0=xnew;
%     Error(i)=err;
% end
% %% Graph
%
% 
% plot(1:n,Error,'r-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
% end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  %% 2nd method
%  function xnewh = Hmethod(f,df,ddf,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% ddf=@(x) -4.5*sin(x);
% 
% x0=1;
% tol=0.0001;
% n=50;
% %% code
% disp('No Itr     Solution    Errorh')
% 
% Errorh=zeros(1,n);
% for i=1:n
% 
%     xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
%     errh=abs(xnewh-x0);
% 
%     fprintf('%3i %11.4f  %11.4f\n',i,x0,errh);
%     if (errh<tol)
%         break
%     end
% 
%     x0=xnewh;
%     Errorh(i)=errh;
% end
% %% Graph
% 
% 
% plot(1:n,Errorh,'b-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
%  end
% %    
.
6 commentaires
Plus de réponses (1)
  Torsten
      
      
 le 16 Fév 2024
        
      Modifié(e) : Torsten
      
      
 le 16 Fév 2024
  
      %% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
[x_newton,i_newton,Error_newton]=newtonmethod(f,df,x0,tol,n);
ddf=@(x) -4.5*sin(x);
[x_Hmethod,i_Hmethod,Error_Hmethod]=Hmethod(f,df,ddf,x0,tol,n);
%Plot results
hold on
plot(1:i_newton,Error_newton,'r-','Linewidth',02)
plot(1:i_Hmethod,Error_Hmethod,'b-','Linewidth',02)
hold off
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
function [xnew,i,Error] = newtonmethod(f,df,x0,tol,n)
  %% Newton code
  disp('No Itr     Solution    Error  ')
  Error=[];
  for i=1:n
    xnew=x0-(f(x0)/df(x0));
    err=abs(xnew-x0);
    Error=[Error;err];
    fprintf('%3i %11.4f %11.4f\n',i,x0,err);
    if (err<tol)
        break
    end
    x0=xnew;
  end
end
%% 2nd method
function [xnewh,i,Errorh] = Hmethod(f,df,ddf,x0,tol,n)
  %% code
  disp('No Itr     Solution    Errorh')
  Errorh=[];
  for i=1:n   
    xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
    errh=abs(xnewh-x0);
    Errorh=[Errorh;errh];
    fprintf('%3i %11.4f  %11.4f\n',i,x0,errh);
    if (errh<tol)
        break
    end
    x0=xnewh;
  end
end
Voir également
Catégories
				En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!






