How to plot the error of two numerical methods on the same graph?
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm trying to plot the error of two methods, but I got the following error
Index exceeds the number of array elements (3)
Also, How can I plot the error of the two methods on the same graph?
function xnew = newtonmethod(f,df,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
%% Newton code
disp('No Itr Solution Error ')
Error=[];
for i=1:n
xnew=x0-(f(x0)/df(x0));
err=abs(xnew-x0);
fprintf('%3i %11.4f %11.4f %11.4f\n',i,x0,err);
if (err<tol)
break
end
x0=xnew;
Error=[Error;err];
end
%% Graph
plot(1:i,Error(1:i),'r-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2nd method
function xnewh = Hmethod(f,df,ddf,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
ddf=@(x) -4.5*sin(x);
x0=1;
tol=0.0001;
n=50;
%% code
disp('No Itr Solution Errorh')
Errorh=[];
for i=1:n
xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
errh=abs(xnewh-x0);
fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
if (errh<tol)
break
end
x0=xnewh;
Errorh=[Errorh;errh];
end
%% Graph
plot(1:i,Errorh(1:i),'b-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%
0 commentaires
Réponse acceptée
Star Strider
le 16 Fév 2024
I cannot run your code because I do not have arguments for the functions. (I tweaked them to make them a bit more efficient.)
Plotting both results in the same axes is relativbely straightforward.
Example (using different functions) —
figure
plot1
hold on
plot2
hold off
grid
function plot1
plot((0:0.1:5), sin((0:0.1:5)*pi))
end
function plot2
plot((0:0.1:5), cos((0:0.1:5)*pi))
end
%
%
% function xnew = newtonmethod(f,df,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% x0=1;
% tol=0.0001;
% n=50;
% %% Newton code
% disp('No Itr Solution Error ')
% Error=zeros(1,n);
% for i=1:n
% xnew=x0-(f(x0)/df(x0));
% err=abs(xnew-x0);
% fprintf('%3i %11.4f %11.4f %11.4f\n',i,x0,err);
% if (err<tol)
% break
% end
% x0=xnew;
% Error(i)=err;
% end
% %% Graph
%
%
% plot(1:n,Error,'r-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
% end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% 2nd method
% function xnewh = Hmethod(f,df,ddf,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% ddf=@(x) -4.5*sin(x);
%
% x0=1;
% tol=0.0001;
% n=50;
% %% code
% disp('No Itr Solution Errorh')
%
% Errorh=zeros(1,n);
% for i=1:n
%
% xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
% errh=abs(xnewh-x0);
%
% fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
% if (errh<tol)
% break
% end
%
% x0=xnewh;
% Errorh(i)=errh;
% end
% %% Graph
%
%
% plot(1:n,Errorh,'b-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
% end
% %
.
6 commentaires
Plus de réponses (1)
Torsten
le 16 Fév 2024
Modifié(e) : Torsten
le 16 Fév 2024
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
[x_newton,i_newton,Error_newton]=newtonmethod(f,df,x0,tol,n);
ddf=@(x) -4.5*sin(x);
[x_Hmethod,i_Hmethod,Error_Hmethod]=Hmethod(f,df,ddf,x0,tol,n);
%Plot results
hold on
plot(1:i_newton,Error_newton,'r-','Linewidth',02)
plot(1:i_Hmethod,Error_Hmethod,'b-','Linewidth',02)
hold off
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
function [xnew,i,Error] = newtonmethod(f,df,x0,tol,n)
%% Newton code
disp('No Itr Solution Error ')
Error=[];
for i=1:n
xnew=x0-(f(x0)/df(x0));
err=abs(xnew-x0);
Error=[Error;err];
fprintf('%3i %11.4f %11.4f\n',i,x0,err);
if (err<tol)
break
end
x0=xnew;
end
end
%% 2nd method
function [xnewh,i,Errorh] = Hmethod(f,df,ddf,x0,tol,n)
%% code
disp('No Itr Solution Errorh')
Errorh=[];
for i=1:n
xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
errh=abs(xnewh-x0);
Errorh=[Errorh;errh];
fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
if (errh<tol)
break
end
x0=xnewh;
end
end
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!