Solving ODE using laplace

16 vues (au cours des 30 derniers jours)
LUCA
LUCA le 21 Avr 2024
Modifié(e) : Torsten le 21 Avr 2024
This is the question I'm struggling on
Using the Laplace transform find the solution for the following ODE:
d^2/dt(y(t)) + 16y(t) = 16[1(t-3) -1(t)]
initial conditions:
y(0) = 0
dy(t)/dt = 0
I have to solve the ODE with laplace and with inverse laplace
Save the inverse laplace in y_sol.
This is what I wrote but it gives me the wrong answer:
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(1*(t-3)-1*(t))
ode(t) = 
Y1 = laplace(ode,t,s)
Y1 = 
ysol1 = subs(Y1,laplace(y,t,s),X)
ysol1 = 
ysol2 = subs(ysol1,y(0),y0)
ysol2 = 
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0)
ysol3 = 
ysol = solve(ysol3, X)
ysol = 
Y = simplify(expand(ysol))
Y = 
y_sol = ilaplace(Y)
y_sol = 
  7 commentaires
Sam Chak
Sam Chak le 21 Avr 2024
I didn't simplify the analytical solution from dsolve, but it seems to yield the similar plot as WolframAlpha.
sympref('HeavisideAtOrigin', 1);
syms y(t) t s
dy = diff( y,t);
ddy = diff(dy,t);
massSpring = ddy + 16*y == 16*(heaviside(t-3) - heaviside(t))
massSpring(t) = 
sol = dsolve(massSpring, y(0) == 0, dy(0) == 0)
sol = 
fplot(sol, [0 13]), grid on, xlabel('t'), title('y(t)')
Torsten
Torsten le 21 Avr 2024
Modifié(e) : Torsten le 21 Avr 2024
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(heaviside(t-3)-heaviside(t));
Y1 = laplace(ode,t,s);
ysol1 = subs(Y1,laplace(y,t,s),X);
ysol2 = subs(ysol1,y(0),y0);
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0);
ysol = solve(ysol3, X);
Y = simplify(expand(ysol));
y_sol = ilaplace(Y)
y_sol = 
Check_Laplace_Solution = dsolve(ode, y(0) == 0, dot_y(0) == 0)
Check_Laplace_Solution = 
hold on
fplot(y_sol,[0 13])
fplot(Check_Laplace_Solution,[0 13])
hold off
grid on

Connectez-vous pour commenter.

Réponses (1)

Star Strider
Star Strider le 21 Avr 2024
Your code looks correct to me, and when I checked the result with dsolve, its solution agreees with yours —
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(1*(t-3)-1*(t))
ode(t) = 
Y1 = laplace(ode,t,s)
Y1 = 
ysol1 = subs(Y1,laplace(y,t,s),X)
ysol1 = 
ysol2 = subs(ysol1,y(0),y0)
ysol2 = 
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0)
ysol3 = 
ysol = solve(ysol3, X)
ysol = 
Y = simplify(expand(ysol))
Y = 
y_sol = ilaplace(Y)
y_sol = 
Check_Laplace_Solution = dsolve(ode, y(0) == 0, dot_y(0) == 0)
Check_Laplace_Solution = 
.

Catégories

En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by