Error using function handles in genetic algorithm.
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am getting error:
Unrecognized function or variable 'p'.
clc; clear; close all;
Vs = 250;
k = @(p) p/Vs;
c = @(theta) Vs/sin(theta);
w = 0.001;
d_h = -2;
numElements = 10;
ES = d_h/numElements;
r_s= 2000;
G_s= 1.25e8;
n_s= 0.3;
l_s= 2*n_s*G_s/(1-2*n_s);
a_s= sqrt((l_s+2*G_s)/r_s);
b_s= sqrt(G_s/r_s);
r_g= 24;
G_g= 3e6;
n_g= 0.17;
dl = -5;
%% Genetic Algorithm Parameters
options = optimoptions(@ga,'PopulationSize', 30, 'MaxGenerations', 200,'PlotFcn','gaplotbestf');
% Objective Function
objective_function = @(x_optimal) calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k(p), c(theta), r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
A = [];
b = [];
lb = zeros(1, numElements-2);
ub = ones(1, numElements-2);
nonlcon = [];
[x_optimal, fval] = ga(objective_function, numElements-2, A, b, [], [], lb, ub,nonlcon, options);
% function to calculate objective
function answer = calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k, c, r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
x = [1, x_optimal, 1];
disp(x_optimal);
% rest of the code
answer = integral2(@(theta,p)arrayfun(@(theta,p)q(theta,p),theta,p),pi/18,pi/6,2*pi,20*pi); % minimize
end
6 commentaires
Torsten
le 14 Mai 2024
Modifié(e) : Torsten
le 14 Mai 2024
Try this.
I wonder why your function does not depend on "x_optimal" . From your code, you will always get the same value for "answer" from the "integral2" function, and thus "ga" will terminate with the initial condition vector for x_optimal.
Vs = 250;
k = @(p) p/Vs;
c = @(theta) Vs/sin(theta);
w = 0.001;
d_h = -2;
numElements = 10;
ES = d_h/numElements;
r_s= 2000;
G_s= 1.25e8;
n_s= 0.3;
l_s= 2*n_s*G_s/(1-2*n_s);
a_s= sqrt((l_s+2*G_s)/r_s);
b_s= sqrt(G_s/r_s);
r_g= 24;
G_g= 3e6;
n_g= 0.17;
dl = -5;
%% Genetic Algorithm Parameters
options = optimoptions(@ga,'PopulationSize', 30, 'MaxGenerations', 200,'PlotFcn','gaplotbestf');
% Objective Function
objective_function = @(x_optimal) driver_calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k, c, r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
A = [];
b = [];
lb = zeros(1, numElements-2);
ub = ones(1, numElements-2);
nonlcon = [];
[x_optimal, fval] = ga(objective_function, numElements-2, A, b, [], [], lb, ub,nonlcon, options);
function answer = driver_calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k, c, r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
q = @(theta,p)calculate_objective(theta,p,x_optimal,Vs, w, r_s, G_s, n_s, k(p), c(theta), r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);)
answer = integral2(@(theta,p)arrayfun(@(theta,p)q(theta,p),theta,p),pi/18,pi/6,2*pi,20*pi); % minimize
end
% function to calculate objective
function answer = calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k, c, r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
disp(x_optimal);
l_g= 2*n_g*G_g/(1-2*n_g);
a_g= sqrt((l_g+2*G_g)/r_g);
b_g= sqrt(G_g/r_g);
g_a_g= sqrt((c/a_g)^2-1);
g_b_g= sqrt((c/b_g)^2-1);
theta_g= 2*(b_g/c)^2;
A_g = k*g_a_g*dl;
B_g = k*g_b_g*dl;
C_A_g= cos(A_g);
S_A_g= sin(A_g);
C_B_g= cos(B_g);
S_B_g= sin(B_g);
Gg_inv = [theta_g*C_A_g+(1-theta_g)*C_B_g, 1i*(g_a_g*g_b_g*theta_g*S_B_g+(theta_g-1)*S_A_g)/g_a_g, (-C_A_g+C_B_g)/(c^2*r_g), 1i*(g_a_g*g_b_g*S_B_g+S_A_g)/(c^2*g_a_g*r_g);...
1i*(-g_a_g*g_b_g*theta_g*S_A_g+(1-theta_g)*S_B_g)/g_b_g, theta_g*C_B_g+(1-theta_g)*C_A_g, 1i*(g_a_g*g_b_g*S_A_g+S_B_g)/(c^2*g_b_g*r_g), (-C_A_g+C_B_g)/(c^2*r_g);...
c^2*r_g*theta_g*(theta_g-1)*(C_A_g-C_B_g), 1i*c^2*r_g*(g_a_g*g_b_g*theta_g^2*S_B_g+(theta_g-1)^2*S_A_g)/g_a_g, theta_g*C_B_g+(1-theta_g)*C_A_g, 1i*(g_a_g*g_b_g*theta_g*S_B_g+(theta_g-1)*S_A_g)/g_a_g;...
1i*c^2*r_g*(g_a_g*g_b_g*theta_g^2*S_A_g+(theta_g-1)^2*S_B_g)/g_b_g, c^2*r_g*theta_g*(theta_g-1)*(C_A_g-C_B_g), 1i*(-g_a_g*g_b_g*theta_g*S_A_g+(1-theta_g)*S_B_g)/g_b_g, theta_g*C_A_g+(1-theta_g)*C_B_g];
l_s= 2*n_s*G_s/(1-2*n_s);
a_s= sqrt((l_s+2*G_s)/r_s);
b_s= sqrt(G_s/r_s);
g_a_s= sqrt((c/a_s)^2-1);
g_b_s= sqrt((c/b_s)^2-1);
theta_s= 2*(b_s/c)^2;
A_s = k*g_a_s*d_h;
B_s = k*g_b_s*d_h;
C_A_s= cos(A_s);
S_A_s= sin(A_s);
C_B_s= cos(B_s);
S_B_s= sin(B_s);
Gs_inv = [theta_s*C_A_s+(1-theta_s)*C_B_s, 1i*(g_a_s*g_b_s*theta_s*S_B_s+(theta_s-1)*S_A_s)/g_a_s, (-C_A_s+C_B_s)/(c^2*r_s), 1i*(g_a_s*g_b_s*S_B_s+S_A_s)/(c^2*g_a_s*r_s);...
1i*(-g_a_s*g_b_s*theta_s*S_A_s+(1-theta_s)*S_B_s)/g_b_s, theta_s*C_B_s+(1-theta_s)*C_A_s, 1i*(g_a_s*g_b_s*S_A_s+S_B_s)/(c^2*g_b_s*r_s), (-C_A_s+C_B_s)/(c^2*r_s);...
c^2*r_s*theta_s*(theta_s-1)*(C_A_s-C_B_s), 1i*c^2*r_s*(g_a_s*g_b_s*theta_s^2*S_B_s+(theta_s-1)^2*S_A_s)/g_a_s, theta_s*C_B_s+(1-theta_s)*C_A_s, 1i*(g_a_s*g_b_s*theta_s*S_B_s+(theta_s-1)*S_A_s)/g_a_s;...
1i*c^2*r_s*(g_a_s*g_b_s*theta_s^2*S_A_s+(theta_s-1)^2*S_B_s)/g_b_s, c^2*r_s*theta_s*(theta_s-1)*(C_A_s-C_B_s), 1i*(-g_a_s*g_b_s*theta_s*S_A_s+(1-theta_s)*S_B_s)/g_b_s, theta_s*C_A_s+(1-theta_s)*C_B_s];
B= Gs_inv*Gg_inv;
B1= B(1,1);
B2= B(1,2);
B3= B(1,3);
B4= B(1,4);
B5= B(2,1);
B6= B(2,2);
B7= B(2,3);
B8= B(2,4);
B9= B(3,1);
B10= B(3,2);
B11= B(3,3);
B12= B(3,4);
B13= B(4,1);
B14= B(4,2);
B15= B(4,3);
B16= B(4,4);
c1= -(B1+B2);
c2= -(B3+B4);
c3= -(B5+B6);
c4= -(B7+B8);
c5= -(B9+B10);
c6= -(B11+B12);
c7= -(B13+B14);
c8= -(B15+B16);
x2_inv= [(-b_bar*c3*c8+b_bar*c4*c7+c3*c6*d_bar-c4*c5*d_bar+c5*c8-c6*c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (b_bar*c1*c8-b_bar*c2*c7-c1*c6*d_bar+c2*c5*d_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-b_bar*c1*c4+b_bar*c2*c3+c1*c6-c2*c5)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7);...
(a_bar*c3*c8-a_bar*c4*c7-c3*c6*c_bar+c4*c5*c_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-a_bar*c1*c8+a_bar*c2*c7+c1*c6*c_bar-c2*c5*c_bar+c5*c8-c6*c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (a_bar*c1*c4-a_bar*c2*c3+c3*c6-c4*c5)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7);...
(a_bar*c4*d_bar-a_bar*c8-b_bar*c4*c_bar+c6*c_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-a_bar*c2*d_bar+b_bar*c2*c_bar-b_bar*c8+c6*d_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-c2*c_bar-c4*d_bar+c8)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (a_bar*c2+b_bar*c4-c6)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7);...
(-a_bar*c3*d_bar+a_bar*c7+b_bar*c3*c_bar-c5*c_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (a_bar*c1*d_bar-b_bar*c1*c_bar+b_bar*c7-c5*d_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (c1*c_bar+c3*d_bar-c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-a_bar*c1-b_bar*c3+c5)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7)];
Y2= x2_inv*(B*[0;0;-w;w]);
u_in= (B(1,4)-B(1,3))*c*w;
mag_u_in= abs(u_in);
w_in= (B(2,4)-B(2,3))*c*w;
mag_w_in= abs(w_in);
Input= sqrt(mag_u_in^2+mag_w_in^2);
u_out= c*abs(Y2(1,1));
w_out= c*abs(Y2(2,1));
Output= sqrt(u_out^2+w_out^2);
answer = Output/Input;
end
Réponses (0)
Voir également
Catégories
En savoir plus sur Solver Outputs and Iterative Display dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!