How to solve non_linear equation

2 vues (au cours des 30 derniers jours)
Fatima Majeed
Fatima Majeed le 12 Juin 2024
Commenté : Sam Chak le 13 Juin 2024
I want to solve this eqution

Réponse acceptée

Star Strider
Star Strider le 12 Juin 2024
Solve it symbolically —
syms z
Eqn = z^3 == log(z)*(482036/0.18525)^5
Eqn = 
Z = solve(Eqn)
Z = 
Z = vpa(Z)
Z = 
format longG
Zd = double(Z)
Zd =
-76151096277.1022 + 123912303259.595i 145274860824.135 + 0i 1 + 0i -76151096277.1022 - 123912303259.595i
.
  4 commentaires
Sam Chak
Sam Chak le 13 Juin 2024
Modifié(e) : Sam Chak le 13 Juin 2024
@Star Strider, @Torsten, Wolfram Alpha also returned the perfect "1" as one of the solutions. But we all know that . Maybe that's merely an approximation because ?
syms z
f = (z^3)/(482036/0.18525)^5;
limit(f, z, 1)
ans = 
double(ans)
ans = 8.3829e-33
Plot:
z = linspace(0.9, 1.1, 20001);
y1 = z.^3;
y2 = log(z)*(482036/0.18525)^5;
plot(z, [y1; y2]), grid on, ylim([0 2])
Sam Chak
Sam Chak le 13 Juin 2024
I guess both MATLAB and Wolfram Alpha analytically computed the solution:
c = (4820360/0.018525)^7; % constant
sol = exp(-lambertw(-3/c)/3)
sol = 1
However, I mathematically believe that this is just an approximation with the real solution very close to being 1.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Tags

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by