I would like to plot an interpolated 3d Surface between two faces, i.e. the third face of a truncated cone. my plot isn't working but I'm not sure what is wrong

1 vue (au cours des 30 derniers jours)
r1=0.5;
% t1=[(0:0.1:2*pi),0];
t1=0:0.1:2*pi;
X1=r1*cos(t1);
Y1=r1*sin(t1);
n1=numel(X1);
Z1=zeros(1,n1);
DT=delaunay(X1,Y1);
trisurf(DT,X1,Y1,Z1);
hold;
r2=0.25;
% t2=[(0:0.1:2*pi),0];
t2=0:0.1:2*pi;
X2=r2*cos(t2);
Y2=r2*sin(t2);
n2=numel(X2);
Z2=200*ones(1,n2);
DT2=delaunay(X2,Y2);
trisurf(DT2,X2,Y2,Z2);
X= [X1,X2];
Y=[Y1,Y2];
Z=[Z1,Z2];
[xq,yq]=meshgrid(X,Y);
zq=ones(126).*Z;
surf(xq,yq,zq);

Réponse acceptée

Star Strider
Star Strider le 19 Juin 2024
TThis does not look like a cone to me at all.
What do you want to do?
r1=0.5;
% t1=[(0:0.1:2*pi),0];
t1=0:0.1:2*pi;
X1=r1*cos(t1);
Y1=r1*sin(t1);
n1=numel(X1);
Z1=zeros(1,n1);
DT=delaunay(X1,Y1);
trisurf(DT,X1,Y1,Z1);
hold;
Current plot held
r2=0.25;
% t2=[(0:0.1:2*pi),0];
t2=0:0.1:2*pi;
X2=r2*cos(t2);
Y2=r2*sin(t2);
n2=numel(X2);
Z2=200*ones(1,n2);
DT2=delaunay(X2,Y2);
trisurf(DT2,X2,Y2,Z2);
X= [X1,X2];
Y=[Y1,Y2];
Z=[Z1,Z2];
[xq,yq]=meshgrid(X,Y);
zq=ones(126).*Z;
surf(xq,yq,zq);
view(-27,30)
My approach to a truncated cone (assuming my interpretation matches yours), woudl be something like this —
r = [1; 2]; % Radius Multipliers
h = [0; 3]; % Height Multipliers
a = linspace(0, 2*pi); % Angle Vector
cyl = [cos(a); sin(a)] % Circles
cyl = 2x100
1.0000 0.9980 0.9920 0.9819 0.9679 0.9501 0.9284 0.9029 0.8738 0.8413 0.8053 0.7660 0.7237 0.6785 0.6306 0.5801 0.5272 0.4723 0.4154 0.3569 0.2969 0.2358 0.1736 0.1108 0.0476 -0.0159 -0.0792 -0.1423 -0.2048 -0.2665 0 0.0634 0.1266 0.1893 0.2511 0.3120 0.3717 0.4298 0.4862 0.5406 0.5929 0.6428 0.6901 0.7346 0.7761 0.8146 0.8497 0.8815 0.9096 0.9341 0.9549 0.9718 0.9848 0.9938 0.9989 0.9999 0.9969 0.9898 0.9788 0.9638
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
figure
surf(r*cyl(1,:), r*cyl(2,:), h.*[ones(size(a)); ones(size(a))], 'FaceColor','b', 'FaceAlpha',0.5) % Plot Cone
hold on
patch((r(1)*cyl(1,:)), (r(1)*cyl(2,:)), ones(size(a))*h(1), 'r') % Plot Lower Cap
patch(r(2)*cyl(1,:), r(2)*cyl(2,:), ones(size(a))*h(2), 'g') % Plot Upper Cap
hold off
grid on
axis('equal')
view(-27,30)
This is my interpretation of a truncated cone with end-caps.
.
  6 commentaires
Hayat
Hayat le 20 Juin 2024
thanks! i got the top cap with the x,y,z delaunay so looks like we are on the right track. thank you!

Connectez-vous pour commenter.

Plus de réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by