- The "ver" command returns all installed products. They might not be licensed for you (on purpose or on error), the the product files are there
- To understand where the problem is, you could try an example and see if/what error message you get. Lets see Simulink Test https://www.mathworks.com/help/sltest/gs/create-a-simple-baseline-test.html. What do you get if you run the command?
Simulink Apps Missing in Toolbar
42 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello All,
I am running into an issue with my simulink apps not showing up in the apps toolbar. The toolbart has some apps present, but the ones I need (Parameter Estimator, Simulink Test, etc) do not show up. The apps I need are within packages that I have already installed and have licenses and access to use. I am using an Enterprise licensing program through my job, if that helps at all. So far, I have ran the product installer multiple times, have tried adding them from the "Get Add-Ons" block (already installed so does not work), and have looked for help through the community but haven't had a solution yet. Thanks for any help.
0 commentaires
Réponses (2)
Andreas Goser
le 5 Nov 2024
Modifié(e) : Andreas Goser
le 7 Nov 2024
Based on your description, I am under the impression you have tested good theories already what happens. If you have an enterprise license, your IT will be helpful and of course MathWorks support too. Here are a few thoughts:
open_system('sltestBasicCruiseControlBaseline')
7 commentaires
Andreas Goser
le 11 Nov 2024
Please point yout IT department to https://www.mathworks.com/matlabcentral/answers/98895-why-do-i-receive-license-manager-error-39
Prathiksha
le 27 Nov 2024
clc;
clear;
close all;
% -----------------------
% PARAMETERS AND SIGNALS
% -----------------------
n_samples = 500; % Number of samples
t = 0:n_samples-1; % Time vector
% Desired signal (sinusoidal)
desired_signal = sin(2*pi*0.01*t);
% Additive white Gaussian noise (AWGN)
noise = 0.5 * randn(1, n_samples);
% Noisy signal
noisy_signal = desired_signal + noise;
% Channel variability simulation (fading)
fading = 0.5 + 0.5 * sin(2*pi*0.005*t); % Simulate channel gain variability
channel_signal = fading .* noisy_signal;
% -----------------------
% NOISE AND INTERFERENCE MITIGATION (LMS FILTERING)
% -----------------------
filter_order = 8; % Order of adaptive filter
mu = 0.01; % Learning rate for LMS
weights = zeros(filter_order, 1); % Initialize weights
filtered_signal = zeros(1, n_samples); % Initialize filtered signal
for i = filter_order:n_samples
x = noisy_signal(i:-1:i-filter_order+1); % Input vector
filtered_signal(i) = weights' * x'; % Filter output
error = desired_signal(i) - filtered_signal(i); % Error signal
weights = weights + 2 * mu * error * x'; % Update weights
end
% -----------------------
% ADAPTIVE MODULATION (BASED ON SNR)
% -----------------------
snr = 10 * log10(var(channel_signal) / var(noise)); % Compute SNR
if snr < 5
modulation_scheme = 'BPSK'; % Low SNR
elseif snr < 15
modulation_scheme = 'QPSK'; % Medium SNR
elseif snr < 25
modulation_scheme = '16-QAM'; % High SNR
else
modulation_scheme = '64-QAM'; % Very High SNR
end
disp(['Selected Modulation Scheme: ', modulation_scheme]);
% -----------------------
% SPECTRAL EFFICIENCY (OFDM)
% -----------------------
n_subcarriers = 64; % Number of OFDM subcarriers
modulation_order = 16; % 16-QAM
data = randi([0 modulation_order-1], n_subcarriers, n_samples); % Random data
% OFDM Modulation
modulated_data = qammod(data(:), modulation_order, 'UnitAveragePower', true);
ofdm_symbols = ifft(modulated_data, n_subcarriers);
% Adding AWGN to OFDM symbols
noisy_ofdm = awgn(ofdm_symbols, snr, 'measured');
% OFDM Demodulation
demodulated_data = fft(noisy_ofdm, n_subcarriers);
recovered_data = qamdemod(demodulated_data, modulation_order);
% -----------------------
% REAL-TIME ADAPTATION (KALMAN FILTER)
% -----------------------
x_estimated = zeros(1, n_samples); % Initialize estimated signal
P = 1; % Initial error covariance
Q = 0.01; % Process noise covariance
R = 0.5; % Measurement noise covariance
x = 0; % Initial state
for i = 1:n_samples
% Prediction step
P = P + Q; % Update error covariance
% Measurement update
K = P / (P + R); % Kalman gain
x = x + K * (noisy_signal(i) - x); % Update state estimate
P = (1 - K) * P; % Update error covariance
% Store the result
x_estimated(i) = x;
end
% -----------------------
% PLOT RESULTS
% -----------------------
figure;
% Original, Noisy, and Filtered signals
subplot(3, 1, 1);
plot(t, desired_signal, 'g', 'LineWidth', 1.5); hold on;
plot(t, noisy_signal, 'r', 'LineWidth', 1);
plot(t, filtered_signal, 'b', 'LineWidth', 1);
legend('Desired Signal', 'Noisy Signal', 'Filtered Signal');
title('LMS Filtering');
xlabel('Samples'); ylabel('Amplitude'); grid on;
% Fading channel effect
subplot(3, 1, 2);
plot(t, fading, 'k', 'LineWidth', 1.5);
title('Simulated Fading Channel');
xlabel('Samples'); ylabel('Channel Gain'); grid on;
% Kalman Filter adaptation
subplot(3, 1, 3);
plot(t, noisy_signal, 'r', 'LineWidth', 1); hold on;
plot(t, x_estimated, 'b', 'LineWidth', 1.5);
legend('Noisy Signal', 'Kalman Filter Output');
title('Kalman Filtering for Real-Time Adaptation');
xlabel('Samples'); ylabel('Amplitude'); grid on;
disp('Program completed successfully!');
what was wrong in this code
0 commentaires
Voir également
Catégories
En savoir plus sur FPGA, ASIC, and SoC Development dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!