4th order Runge - Kutta vs. 4th order Predictor - Corrector
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello once again. As we can see, the error of the 4th order predictor - corrector (assuminig my code for this is correct) is greater than that of 4th order Runge - Kutta. Shouldn't be the other way around ?
%--- Exercise 1 - A
%--- Solving the diff. eqn. N'(t) = N(t) - c*N^2(t) with c = 0.5 using
%--- Euler's method, Runge - Kutta method, and predictor-corrector method, and comparing in graph.
%--- I have four initial values for N0.
clc, close all, format long
tmax = 10; % input('Enter tmax = ');
c = 0.5;
h = 0.1;
f = @(t,N) N - c*N.^2;
N0 = [0.1 0.5 1.0 2.0];
LN = length(N0);
%---------- Analytical Solution ----------
for i = 1:LN
syms n(t)
Df = diff(n) == n - c*n^2;
nAnalytical = dsolve(Df,n(0) == N0(i));
nfun = matlabFunction(nAnalytical, 'vars', t);
%-------------------------------------------
t = 0:h:tmax;
L = length(t)-1;
%---------- Simple Euler's method ----------
EulerN = zeros(1,L);
for j = 1:L
EulerN(1) = N0(i);
EulerN(1,j+1) = EulerN(j) + h*f(':',EulerN(j));
end
% ---------- Improved Euler's method ----------
ImpN = zeros(1,L);
for j = 1:L
ImpN(1) = N0(i);
ImpN(1,j+1) = ImpN(j) + 0.5*h*( f ( t(j), ImpN(j) ) + f ( t(j+1), ImpN(j) + h * f ( t(j), ImpN(j) ) ) );
end
%---------- Runge - Kutta method ----------
RKN = zeros(1,L);
for j = 1:L
RKN(1) = N0(i);
K1 = f(t(j),RKN(j));
K2 = f(t(j) + h*0.5, RKN(j) + h*K1*0.5);
K3 = f(t(j) + h*0.5, RKN(j) + h*K2*0.5);
K4 = f(t(j) + h, RKN(j) + h*K3);
RKN(j+1) = RKN(j) + h/6*(K1 + K4 + 2*K2 + 2*K3);
end
%---------- 4th order Predictor - Corrector ----------
PredN = zeros(1,L);
CorN = zeros(1,L);
for k = 1:L+1
if k <= 4
PredN(k) = RKN(k);
CorN(k) = RKN(k);
else
PredN(k) = PredN(k-1) + h/24*( 55*f(t(k-1),RKN(k-1)) - 59*f(t(k-2),RKN(k-2)) + 37*f(t(k-3),RKN(k-3)) - 9*f(t(k-4),RKN(k-4)));
CorN(k) = PredN(k-1) + h/24*(9*f(t(k),PredN(k)) + 19*f(t(k-1),RKN(k-1)) - 5*f(t(k-2),RKN(k-2)) + f(t(k-3),RKN(k-3)));
end
end
PC4 = CorN;
%---------------------------------------------------
%---------- Plotting -------------------------------
figure(i)
subplot(3,1,1)
fplot(nAnalytical,[0 tmax],'k')
title({'Solution of N'' = N - 0.5N^2',sprintf('for the initial condition N_0 = %.1f', N0(i))})
xlabel('t'), ylabel('N(t)'), hold on, grid on
plot(t,EulerN,t,ImpN,t,RKN,t,PC4)
legend({'Analytical solution','Simple Euler','Improved Euler','RK4','PC4'},'Location','Southeast'), grid on
N = nfun(t);
subplot(3,1,2)
plot(t,abs(N - EulerN),t,abs(N - ImpN),t,abs(N - RKN),t,abs(N - PC4))
title(sprintf('Error of each method for N_0 = %.1f',N0(i)))
xlabel('t'), ylabel('Error')
legend({'Simple Euler','Improved Euler','RK4','PC4'}), grid on, hold on
subplot(3,1,3)
plot(t,abs(N - RKN),t,abs(N - PC4))
title(sprintf('Error of RK4 and PC4 for N_0 = %.1f',N0(i)))
xlabel('t'), ylabel('Error')
legend({'RK4','PC4'}), grid on, hold on
%----------------------------------------------------------
end
0 commentaires
Réponse acceptée
Torsten
le 2 Jan 2025
Modifié(e) : Torsten
le 2 Jan 2025
%--- Exercise 1 - A
%--- Solving the diff. eqn. N'(t) = N(t) - c*N^2(t) with c = 0.5 using
%--- Euler's method, Runge - Kutta method, and predictor-corrector method, and comparing in graph.
%--- I have four initial values for N0.
clc, clear all, close all, format long
tmax = 10; %input('Enter tmax = ');
c = 0.5;
h = 0.1;
f = @(t,N) N - c*N.^2;
N0 = [0.1 0.5 1.0 2.0];
LN = length(N0);
%---------- Analytical Solution ----------
for i = 1:LN
syms n(t)
Df = diff(n) == n - c*n^2;
nAnalytical = dsolve(Df,n(0) == N0(i));
nfun = matlabFunction(nAnalytical, 'vars', t);
% %-------------------------------------------
t = 0:h:tmax;
L = length(t)-1;
%---------- Simple Euler's method ----------
EulerN = zeros(1,L);
for j = 1:L
EulerN(1) = N0(i);
EulerN(1,j+1) = EulerN(j) + h*f(':',EulerN(j));
end
% ---------- Improved Euler's method ----------
ImpN = zeros(1,L);
for j = 1:L
ImpN(1) = N0(i);
ImpN(1,j+1) = ImpN(j) + 0.5*h*( f ( t(j), ImpN(j) ) + f ( t(j+1), ImpN(j) + h * f ( t(j), ImpN(j) ) ) );
end
%---------- Runge - Kutta method ----------
RKN = zeros(1,L);
RKN(1) = N0(i);
for j = 1:L
K1 = f(t(j),RKN(j));
K2 = f(t(j) + h*0.5, RKN(j) + h*K1*0.5);
K3 = f(t(j) + h*0.5, RKN(j) + h*K2*0.5);
K4 = f(t(j) + h, RKN(j) + h*K3);
RKN(j+1) = RKN(j) + h/6*(K1 + K4 + 2*K2 + 2*K3);
end
%---------- 4th order Predictor - Corrector ----------
PC4 = zeros(1,L+1);
PC4(1:4) = RKN(1:4);
for j = 4:L
PC40 = PC4(j)+h*(55.0*f(t(j),PC4(j))-59.0*f(t(j-1),PC4(j-1))+37.0*f(t(j-2),PC4(j-2))-9.0*f(t(j-3),PC4(j-3)))/24.0;
% correct PC4(j+1)
PC4(j+1) = PC4(j)+h*(9.0*f(t(j+1),PC40)+19.0*f(t(j),PC4(j))-5.0*f(t(j-1),PC4(j-1))+f(t(j-2),PC4(j-2)))/24.0;
end
%---------- Plotting -------------------------------
figure(i)
subplot(3,1,1)
fplot(nAnalytical,[0 tmax],'k')
title({'Solution of N'' = N - 0.5N^2',sprintf('N_0 = %.1f', N0(i))})
xlabel('t'), ylabel('N(t)'), hold on, grid on
plot(t,EulerN,t,ImpN,t,RKN,t,PC4)
legend({'Analytical solution','Simple Euler','Improved Euler','RK4','PC4'},'Location','Southeast'), grid on
N = nfun(t);
subplot(3,1,2)
plot(t,abs(N - EulerN),t,abs(N - ImpN),t,abs(N - RKN),t,abs(N - PC4))
title(sprintf('Error of each method for N_0 = %.1f',N0(i)))
xlabel('t'), ylabel('Error')
legend({'Simple Euler','Improved Euler','RK4','PC4'}), grid on, hold on
subplot(3,1,3)
plot(t,abs(N - RKN),t,abs(N - PC4))
title(sprintf('Error of RK4 and PC4 for N_0 = %.1f',N0(i)))
xlabel('t'), ylabel('Error')
legend({'RK4','PC4'}), grid on, hold on
%----------------------------------------------------------
end
3 commentaires
Torsten
le 2 Jan 2025
So, PC4 it's still worst than RK4, but is this true in general ?
Not in all regions for t. And both have order 4 - so why do you think PC4 should be more precise than RK4 ?
Torsten
le 3 Jan 2025
In order to avoid unnecessary evaluations of the derivative function, I suggest using the following code for the predictor-corrector scheme:
%---------- 4th order Predictor - Corrector ----------
PC4 = zeros(1,L+1);
PC4(1:4) = RKN(1:4);
fm1 = f(t(3),PC4(3));
fm2 = f(t(2),PC4(2));
fm3 = f(t(1),PC4(1));
for j = 4:L
fm0 = f(t(j),PC4(j));
PC40 = PC4(j)+h*(55.0*fm0-59.0*fm1+37.0*fm2-9.0*fm3)/24.0;
% correct PC4(j+1)
fPC40 = f(t(j+1),PC40);
PC4(j+1) = PC4(j)+h*(9.0*fPC40+19.0*fm0-5.0*fm1+fm2)/24.0;
fm3 = fm2;
fm2 = fm1;
fm1 = fm0;
end
Plus de réponses (1)
Torsten
le 2 Jan 2025
For k>4, the variable RKN should no longer appear in the equations
PredN(k) = PredN(k-1) + h/24*( 55*f(t(k-1),RKN(k-1)) - 59*f(t(k-2),RKN(k-2)) + 37*f(t(k-3),RKN(k-3)) - 9*f(t(k-4),RKN(k-4)));
CorN(k) = PredN(k-1) + h/24*(9*f(t(k),PredN(k)) + 19*f(t(k-1),RKN(k-1)) - 5*f(t(k-2),RKN(k-2)) + f(t(k-3),RKN(k-3)));
2 commentaires
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!











