G_PI = 
Use of symbolix toolbox to derive PI controller Kp,Ki
    3 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
    Jack Daniels
 le 17 Jan 2025
  
    
    
    
    
    Commenté : Star Strider
      
      
 le 17 Jan 2025
            I'd like try to use Symbolic toolbox to derive closed loop transfer function of control system:


to help design PI controller as of standard 2nd order system  compring charasterictic polynomial with that of a standard second order

to get out:

Please advice how to achive it with Symbolic toolbox?
3 commentaires
Réponse acceptée
  Star Strider
      
      
 le 17 Jan 2025
        You can get there, however you have to force iit — 
syms K_P K_I L R s xi omega_0 real
G_PI = (K_P*s + K_I) / s
G_RL = 1 / (L*s + R)
FB = G_PI * G_RL / (1 + G_PI * G_RL)
FB = simplify(FB, 500)
[FBn,FBd] = numden(FB)
LHS = FBd
RHS = s^2 + 2*xi*omega_0*s + omega_0^2
[LHSc,Lsv] = coeffs(LHS,s)
LHSc(1)
LHSc = LHSc / LHSc(1)
[RHSc,Rsv] = coeffs(RHS,s)
K_Psln = isolate(LHSc(2) == RHSc(2), K_P)
K_Isln = isolate(LHSc(3) == RHSc(3), K_I)
.
2 commentaires
  Star Strider
      
      
 le 17 Jan 2025
				Thank you!  
I believe the online version (here) uses its version of the Live Editor.  (I don’t usually use the Live Editor in my own projects, although sometimes it’s preferable.)  
Plus de réponses (0)
Voir également
Catégories
				En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!













