Multiple regression with nonlinear variables
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Fernando Maturi
le 29 Jan 2025
Commenté : Star Strider
le 2 Fév 2025
Hello,
I am working with the attached dataset, where the first column represents temperature and the next six columns (2–7) correspond to temperature-dependent properties.
I would like to explore whether it is possible to model temperature as a function of these six properties simultaneously, similar to a multiple regression approach. I have previously done this with linear responses, but in this case, the relationships are nonlinear (sigmoidal, Z-shaped).
I considered using a generalized additive model (GAM), but I have no prior experience with this method and may be overlooking a simpler or more suitable approach.
Could anyone provide insights or suggestions on how to best tackle this?
Thanks in advance! :)
0 commentaires
Réponse acceptée
Star Strider
le 29 Jan 2025
I am not certain what you want to do.
Fitting a generalized additive model (GAM) for regression using the fitrgam function would go something like this —
T1 = readtable('temp-vs-properties.txt')
VN = T1.Properties.VariableNames;
figure
plot(T1{:,1}, T1{:,2:end})
grid
xlabel(VN{1})
ylabel('Properties')
legend(VN{2:end}, Location='best')
Mdl = fitrgam(T1, 'Var1')
I am not certain that I am plotting your data correctly.
There are other options, such as fitnlm that might be more appropriate, depending on what you want to do.
.
4 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


