How do I calculate yearly average value for large data set with uneven time spacing?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Tats the Tasmania
le 7 Juil 2015
Modifié(e) : Tats the Tasmania
le 8 Juil 2015
I want to calculate yearly average value of 'd18O PDB' from the following data set (1984-1707):
I have downloaded the text file into 2723 times 2 array and changed ('floored') the year to a whole number but I don't know how to go from there. Since the time spacing is uneven, it is hard to figure out how to solve the average value efficiently.
0 commentaires
Réponse acceptée
Star Strider
le 7 Juil 2015
Modifié(e) : Star Strider
le 8 Juil 2015
I couldn’t get the ftp call to work (I would not object to your sharing that since you obviously did), so I just copied the text file.
fidi = fopen('secas-10yr-iso.txt', 'rt');
Data = textscan(fidi, '%f%f%f%f', 'HeaderLines',4, 'CollectOutput',1);
fclose(fidi);
data = cell2mat(Data);
d18O_PDB = data(:,4);
Date_Data = [data(:,2) data(:,4)];
Y1 = Date_Data(end,1); % Start Year
years = floor(Date_Data(:,1)-Date_Data(end,1))+1; % Create Indices By Year
Yu = unique(years); % Unique Year Indices
mean_d18O_PDB = accumarray(years, Date_Data(:,2), [], @mean); % Calculate Annual Means
Output = flipud([Yu+floor(Y1) mean_d18O_PDB]); % Matrix Of Means By Year
The flipud call is necessary because the first year is the first index, and flipping the matrix puts the years in the order they are in the original file.
EDIT: Added the ‘Date_Data’ (2723 x 2) array to correspond with the array in the Question.
Plus de réponses (1)
David Young
le 7 Juil 2015
If your 2-column matrix is A, try:
years = floor(A(:,1));
data = A(:,2);
means = accumarray(years, data) ./ accumarray(years, ones(size(data)));
This should give you an array of means, indexed by year, with NaN in those years for which there is no data.
Voir également
Catégories
En savoir plus sur Genomics and Next Generation Sequencing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!