Fit Underdamped oscillator to data

7 vues (au cours des 30 derniers jours)
matheu Broom
matheu Broom le 2 Déc 2015
Commenté : Star Strider le 2 Déc 2015
I have been trying to fit a under-damped oscillator equation to some data that I have. I have tried most of the online examples I can find with little success. My data can be visualized below and I have attached a file with the raw data as well.

Réponses (1)

Star Strider
Star Strider le 2 Déc 2015
This is not perfect but the best I can do:
D = load('matheu Broom rate0.2.mat');
t = D.t;
x = D.x;
[xu,ixu] = max(x);
[xl,ixl] = min(x);
xr = (xu-xl); % Range of ‘x’
xm = mean(x); % Estimate d-c offset
xz = x - xm; % Subtract d-c Offset
zt = t(xz .* circshift(xz,[-1 0]) <= 0); % Find zero-crossings
per = 2*mean(diff(zt)); % Estimate period
objfcn = @(b,x) b(1).*exp(b(2).*x).*(sin(2*pi*x./b(3) + 2*pi/b(4))) + b(5); % Function to fit
ssecf = @(b) sum((objfcn(b,t) - x).^2); % Sum-Of-Squares cost function
init_est = [xr; -0.01; per; t(ixl)/per; xm]; % Initial Parameter Estimates
[s,sse] = fminsearch(ssecf, init_est) % Minimise Sum-Of-Squares
tp = linspace(min(t),max(t), 250);
figure(1)
plot(t,x,'b', tp,objfcn(s,tp), 'r')
grid
axis([xlim 0.3 0.7])
text(0.006, 0.62, sprintf('x(t) = %.3f\\cdote^{%.3f\\cdott}\\cdotsin(2\\pit\\cdot%.3f + %.3f) + %.3f', s(1:2), 1/s(3), 2*pi/s(4), s(5)))
  2 commentaires
matheu Broom
matheu Broom le 2 Déc 2015
WOW thank you so much I was pulling my hair out over this problem. This will help me so much :)
Star Strider
Star Strider le 2 Déc 2015
My pleasure!
If it solved your problem, please Accept my Answer

Connectez-vous pour commenter.

Catégories

En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by