Monthly to annual totals

3 vues (au cours des 30 derniers jours)
Anna
Anna le 23 Jan 2012
Hello,
I am hoping to convert monthly totals to annual totals using a loop. However, instead of using the calendar year (Jan-Dec) I want to use the water year which runs from October to September. I have a number of time series organised in a structure (468 rows, 1 column) starting from Oct 1960 and ending in Sept 1999.
I have attempted to sum up each 12 consecutive rows (1:12, 13:24 and so on) to get the annual totals but my code (below) is not doing the job (I am not sure what exactly it is doing) and I was hoping I could get some help fixing it. Many thanks!
for k=1:length(varnames)
p=0;
for i=1:39
for months=1:12
p=p+1;
annual_flow.(varnames{k})(i,1)=flow_monthly.(varnames{k})(p,1);
end
end
end

Réponses (2)

ag
ag le 15 Sep 2024
Hi Anna,
To convert monthly totals to annual totals based on a water year (October to September), you will need to sum every 12 consecutive months starting from October. The current code seems to be assigning monthly values to the annual flow, instead of summing them.
Below is the modified code snippet for the required logic:
for k = 1:length(varnames)
p = 0;
for i = 1:39
% Initialize the sum for the current water year
annual_sum = 0;
% Sum the 12 months of the current water year
for months = 1:12
p = p + 1;
annual_sum = annual_sum + flow_monthly.(varnames{k})(p, 1);
end
% Store the sum in the annual_flow structure
annual_flow.(varnames{k})(i, 1) = annual_sum;
end
end
Hope this helps!

Star Strider
Star Strider le 15 Sep 2024
This is straightforward with the accumarray function —
Y = 1960:1999;
M = 1:12;
Data = [[repmat(M(:), numel(Y), 1) repelem(Y(:), numel(M), 1)] randi(100, 480, 5)] % Create Data
Data = 480×7
1 1960 8 18 78 82 19 2 1960 8 64 81 31 3 3 1960 4 98 56 46 99 4 1960 46 63 19 72 65 5 1960 21 56 28 1 14 6 1960 22 22 57 32 14 7 1960 13 39 46 65 35 8 1960 91 40 48 65 93 9 1960 22 24 10 44 52 10 1960 37 11 21 54 66
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
idx = reshape(ones(12,1) * (1:numel(Y)+1), [], 1);
idx = idx([4:end-12 end-2:end]);
disp(idx)
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 34 34 34 34 34 34 34 34 34 34 34 34 35 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 41 41 41
DataYr = accumarray(idx, (1:numel(idx)), [], @(x) {Data(x,:)}); % Demonstrate Function Results (Delete Later If Desired)
disp(DataYr{1})
1 1960 8 18 78 82 19 2 1960 8 64 81 31 3 3 1960 4 98 56 46 99 4 1960 46 63 19 72 65 5 1960 21 56 28 1 14 6 1960 22 22 57 32 14 7 1960 13 39 46 65 35 8 1960 91 40 48 65 93 9 1960 22 24 10 44 52
disp(DataYr{2})
10 1960 37 11 21 54 66 11 1960 46 98 64 98 45 12 1960 56 48 56 88 74 1 1961 1 59 52 45 67 2 1961 11 86 76 37 18 3 1961 4 76 77 77 49 4 1961 77 77 15 7 85 5 1961 37 64 77 7 96 6 1961 57 19 92 67 9 7 1961 58 47 94 29 66 8 1961 46 52 34 81 14 9 1961 79 83 24 72 27
disp(DataYr{end-1})
10 1998 57 89 33 25 81 11 1998 20 95 39 67 25 12 1998 1 21 84 73 43 1 1999 75 64 43 83 59 2 1999 66 64 69 13 71 3 1999 35 89 87 32 2 4 1999 52 81 63 63 91 5 1999 89 76 66 96 23 6 1999 80 62 19 12 68 7 1999 60 40 23 11 97 8 1999 12 30 97 67 41 9 1999 46 37 54 65 98
DataYr{end}
ans = 3×7
10 1999 51 43 7 79 69 11 1999 82 32 86 85 17 12 1999 91 36 5 98 13
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
DataYrSum = accumarray(idx, (1:numel(idx)), [], @(x) {sum(Data(x,3:end))}); % Calculate Annual Sum
Result = [[Y(:); Y(end)+1] cell2mat(DataYrSum)];
disp(Result)
1960 235 424 423 438 394 1961 509 720 682 662 616 1962 654 595 696 629 452 1963 714 747 513 549 548 1964 684 334 593 617 652 1965 794 432 550 508 551 1966 601 635 518 566 720 1967 531 398 517 745 657 1968 650 586 627 595 499 1969 562 609 398 695 478 1970 455 684 471 699 621 1971 645 791 437 534 559 1972 500 591 649 655 562 1973 519 580 586 754 589 1974 671 383 752 648 596 1975 738 527 519 443 652 1976 572 633 577 540 526 1977 790 411 636 473 593 1978 725 582 699 603 763 1979 552 624 665 594 794 1980 660 660 593 603 550 1981 616 604 388 504 646 1982 660 645 643 456 649 1983 730 538 743 546 640 1984 583 496 523 465 788 1985 453 565 615 619 682 1986 629 728 576 596 635 1987 559 505 544 639 823 1988 481 601 544 590 686 1989 703 553 681 602 812 1990 439 460 544 677 633 1991 787 595 488 621 559 1992 508 668 685 709 384 1993 666 603 569 483 758 1994 634 752 499 639 695 1995 624 677 674 676 549 1996 580 684 405 754 486 1997 524 455 478 710 533 1998 760 586 363 699 510 1999 593 748 677 607 699 2000 224 111 98 262 99
The accumarray function existed in the 2012 versions of MATLAB. With it, no explicit loops are necessary.
The actual code (after importing the file, or creating the data as I did here) begins with creating the ‘idx’ vector.
.

Catégories

En savoir plus sur Tables dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by