Sinusoidal steady state response to sinusoidal input

38 vues (au cours des 30 derniers jours)
tsstac1
tsstac1 le 20 Fév 2016
Modifié(e) : Abdulhakim le 11 Nov 2023
So I have a transfer function of a feedback system,
>> yd
yd =
s^3 + 202 s^2 + 401 s + 200
------------------------------
s^3 + 202 s^2 + 20401 s + 1e06
Of which I'd like to look at the sinusoidal steady state response to the disturbance d(t) = sin(130t).
How do you do this in matlab? I'm well aware of how to get a step or impulse response, but not a sinusoidal response.

Réponse acceptée

Star Strider
Star Strider le 20 Fév 2016
Use the lsim function:
% num = s^3 + 202 s^2 + 401 s + 200
% den = s^3 + 202 s^2 + 20401 s + 1e06
n = [1 202 401 200];
d = [1 202 20401 1E+6];
sys = tf(n,d); % Define LTI System
t = linspace(0, 100, 1000); % Time Vector
u = sin(130*t); % Forcing Function
y = lsim(sys, u, t); % Calculate System Response
figure(1)
plot(t, y)
grid
  4 commentaires
Max Agarwal
Max Agarwal le 25 Sep 2022
here 130 is omega??
Star Strider
Star Strider le 25 Sep 2022
It is the frequency in radians/time_unit.

Connectez-vous pour commenter.

Plus de réponses (1)

Abdulhakim
Abdulhakim le 11 Nov 2023
Modifié(e) : Abdulhakim le 11 Nov 2023
If you know the Laplace transform of the input you can exploit the fact that the impulse function in the s-domain is equal to 1. Here is how:
For a system with input and output
Since
impulse(G*R) is actually the output in the time domain .
The laplace transform for
num = [1 202 401 200];
den = [1 202 20401 10^6];
G = tf(num,den)
SIN = tf(130,[1 0 130^2]);
C = G*SIN
impulse(C)

Catégories

En savoir plus sur MATLAB dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by