Simple question: How to find the 'x' at a certain value of y(x) equation?

132 vues (au cours des 30 derniers jours)
A
A le 28 Fév 2016
Commenté : Star Strider le 17 Avr 2024
This may be a simple question. But let's assume I have one ugly equation:
x = [0:10];
y = @(x) x.^2.*12./23./23.9.*log(x).^2
How do I find the value of 'x' where y = 30?
Thanks!
  4 commentaires
Dyuman Joshi
Dyuman Joshi le 11 Oct 2023
Déplacé(e) : Sam Chak le 11 Oct 2023
Did you tried the approach that is mentioned in the accepted answer?
Sam Chak
Sam Chak le 11 Oct 2023
@Ceylin, Which intersection do you want to solve for x?
syms f(x)
f(x) = sin(x);
fplot(f, [-2*pi, 2*pi]), grid on % draw left side of Eqn
yline(0.2, 'r-') % draw right side of Eqn
xlabel('x')
legend('sin(x)', '0.2')

Connectez-vous pour commenter.

Réponse acceptée

Star Strider
Star Strider le 28 Fév 2016
This works:
x_for_y30 = fzero(@(x)y(x)-30, 50)
x_for_y30 =
14.0341
  8 commentaires
Thanh Thuy Duyen Nguyen
Thanh Thuy Duyen Nguyen le 17 Avr 2024
If I have x and want y then how could I compute that?
Star Strider
Star Strider le 17 Avr 2024
Actually there is an additional way of solving this, using interp1, especially if the actual function is not available —
x = [0:15]+eps;
y = @(x) x.^2.*12./23./23.9.*log(x).^2
y = function_handle with value:
@(x)x.^2.*12./23./23.9.*log(x).^2
yq = 30;
x_for_y30 = interp1(y(x), x, yq) % Get 'x' For Specific 'y'
x_for_y30 = 14.0322
y_for_x2pi = interp1(x, y(x), 2*pi) % Get 'y' For Specific 'x'
y_for_x2pi = 2.9555
figure
plot(x, y(x))
grid
hold on
plot(x_for_y30, 30, 'ms', 'MarkerFaceColor','m')
plot(2*pi, y_for_x2pi, 'cs', 'MarkerFaceColor','c')
hold off
xline(2*pi,'--k', '2\pi')
yline(y_for_x2pi, '--k', sprintf('y=%.2f for x=2\\pi',y_for_x2pi))
xline(x_for_y30, '--k', sprintf('x=%.2f for y=30',x_for_y30))
.

Connectez-vous pour commenter.

Plus de réponses (1)

John BG
John BG le 28 Fév 2016
Modifié(e) : John BG le 29 Fév 2016
Alpha
If you plot the following
x=[-100:.1:100]
f = @(x) x.^2.*12./23./23.9.*log(x).^2
y=f(x)
plot(x,y)
grid on
place the marker on the point that shows y=30 f(x) is not symmetric, it has 2 zeros, and f=30 on 2 places:
x01=14.04
x02=-29.5
if what you really mean is:
f2 = @(x) x.^2.*12./(23.*23.9).*log(abs(x)).^2
then the function is symmetric and there are 2 values of x that satisfy your question:
x01=14.04
x02=-14.04
Compare both functions and y=30
If you find this answer of any help solving this question, please click on the thumbs-up vote link
thanks in advance
John

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by