I'll assume that you have the optimization toolbox. If you don't, you could still do this, but I'm not going to teach you how to write the equivalent of lsqlin, and you need lsqlin to do this efficiently. Ok, yes, you can solve the problem using lsqnonneg.
I assume that you have several hundred points from a curve, and you wish to solve the problem where you minimize the difference between the data and an approximate curve, subject to the constraint that the new curve is truly monotone. I don't see any data attached, so I cannot give you an example where I solve your problem.
The absolutely simplest solution is to use my SLM toolbox, to fit a (piecewise linear) spline through your data, subject to the constraints that the curve is monotone.
(I need to run right now for about an hour. I'll return and see if I can cook up an example of how that will work. If you are able to attach some data, that would help.)
More complex is you could solve it using lsqlin. But that will force you to formulate the problem for that tool. Slightly harder than using SLM, but not a lot harder. BRB...
Back, with an example of what I THINK you are asking to do. I'll start with a smooth curve over a few points in x. I'll use erf, to create a basic sigmoidal shape. Then interpolate it using spline. This will incur ringing in the curve.
x = linspace(-15,15,20);
xi = -15:.1:15;
yi = spline(x,erf(x),xi);
plot(xi,yi)
So you can see the ringing/edge effects in the curve.
slm = slmengine(xi,yi,'knots',xi,'degree',1,'plot','on','increasing','on');
The plot with the points and the fitted curve is hard to see, but I'll zoom into the shoulder area next.
As you see, the curve follows the original data exactly wherever it was monotone already. It only modifies the shape when it needs to do so, using the requirement of monotonicity.
You can extract the actual fitted y values (for this curve type) directly from the struct it produces as:
So this is a very simple way to solve your problem. Simple, because slmengine did all the work for you. Find the SLM toolbox on the file exchange at this link . I could also have approximated the curve using a nice smooth spline, again using monotonicity as a requirement. But that was not your stated goal.
And yes, I can show you how to solve this problem using other tools, like lsqlin or lsqnonneg. But do I really need to do so? I am being lazy and hoping SLM will suffice. :)