Solving non-linear equations - not enough input arguments

17 vues (au cours des 30 derniers jours)
LuC
LuC le 24 Mai 2016
Commenté : John D'Errico le 24 Mai 2016
Hello,
I have some data that I approximated with a polynomial of degree 9, p(x), and I have a non-linear function (with unknown coefficients that is supposed to fit the data). I found a Taylor series of that function, ts(x). In order to find the coefficients, I would like to solve the system p(x) = ts(x).
function f = ts1( x )
% Taylor series expansion
A = 70.94;
B = x(1);
C = x(2);
D = x(3);
E = x(4);
%system of equations
f(1) = B*C*D - 1161; % x^1
f(2) = -D*(C*((B^3*E)/3 + B^3/3) + (B^3*C^3)/6) - 22.21; % x^3
f(3) = D*(C*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)) + (B^2*C^3*((B^3*E)/3 + B^3/3))/6 + B*C*((B^4*C^4)/120 + (B*C^2*((B^3*E)/3 + B^3/3))/3)) + 0.2839; % x^5
f(4) = -D*(C*(B*((2*B^6*E)/15 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(12*B) + B^2*((2*B^4*E)/15 + B^4/7)) + (22*B^7*E)/105 + (B^3*E*((2*B^4*E)/9 + B^4/5))/3) +...
C*((B^3*E)/3 + B^3/3)*((B^4*C^4)/120 + (B*C^2*((B^3*E)/3 + B^3/3))/3) + (B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/6 + B*C*((B^3*C^4*((B^3*E)/3 + ...
B^3/3))/60 + B^2*C^2*((B^4*C^4)/5040 + (B*C^2*((B^3*E)/3 + B^3/3))/60) + (4*B*C^3*((B^3*E)/3 + B^3/3)^2 + 8*B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/(24*B*C))) - 0.001837; % x^7
f(5) = D*(C*((10*B^9*E)/63 + B*(((4*B^9*E^2)/5 + (12*B^9*E)/7)/(18*B) + B^2*((2*B^6*E)/21 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(20*B) + B^2*((2*B^4*E)/21 + B^4/9)) + (B*((4*B^7*E^2)/9 + (8*B^7*E)/5))/20 +...
(2*B^4*E*((2*B^4*E)/15 + B^4/7))/3) + (B^3*E*((2*B^6*E)/15 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(12*B) + B^2*((2*B^4*E)/15 + B^4/7)))/3 + (B^5*E*((2*B^4*E)/9 + B^4/5))/5) + B*C*((B*C*(4*B*C^3*((B^3*E)/3 + ...
B^3/3)^2 + 8*B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5))))/480 + (12*B^2*C^3*(B*((2*B^6*E)/15 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(12*B) + B^2*((2*B^4*E)/15 + B^4/7)) + (22*B^7*E)/105 + (B^3*E*((2*B^4*E)/9 + B^4/5))/3) + ...
12*B*C^3*((B^3*E)/3 + B^3/3)*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/(36*B*C) + B^2*C^2*((B^3*C^4*((B^3*E)/3 + B^3/3))/2520 + B^2*C^2*((B^4*C^4)/362880 + (B*C^2*((B^3*E)/3 + B^3/3))/2520) + (4*B*C^3*((B^3*E)/3 + B^3/3)^2 + ...
8*B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/(480*B*C)) + 2*B*C^2*((B^3*E)/3 + B^3/3)*((B^4*C^4)/5040 + (B*C^2*((B^3*E)/3 + B^3/3))/60)) + C*((B^3*E)/3 + B^3/3)*((B^3*C^4*((B^3*E)/3 + B^3/3))/60 + ...
B^2*C^2*((B^4*C^4)/5040 + (B*C^2*((B^3*E)/3 + B^3/3))/60) + (4*B*C^3*((B^3*E)/3 + B^3/3)^2 + 8*B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/(24*B*C)) + (B^2*C^3*(B*((2*B^6*E)/15 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(12*B) + ...
B^2*((2*B^4*E)/15 + B^4/7)) + (22*B^7*E)/105 + (B^3*E*((2*B^4*E)/9 + B^4/5))/3))/6 + C*((B^4*C^4)/120 + (B*C^2*((B^3*E)/3 + B^3/3))/3)*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5))) + 4.552e-06; % x^9
end
My main looks like this:
x0 = [-0.0095, 0.0014, 4.0000, 0.0165];
f = solve(@ts1, x0, options)
and the error is:
Error using ts1 (line 5)
Not enough input arguments.
Error in sym>funchandle2ref (line 1211)
S = sym(x());
Error in sym>tomupad (line 1114)
x = funchandle2ref(x);
Error in sym (line 151)
S.s = tomupad(x);
Error in solve>getEqns (line 410)
a = formula(sym(a));
Error in solve (line 227)
[eqns,vars,options] = getEqns(varargin{:});
  1 commentaire
ashish ahir
ashish ahir le 24 Mai 2016
Please simplify your question, Make it more readable and understandable,

Connectez-vous pour commenter.

Réponse acceptée

Star Strider
Star Strider le 24 Mai 2016
The way you’ve written your code, I believe you want the fsolve function instead.
Try this:
f = fsolve(@ts1, x0, options)
  1 commentaire
John D'Errico
John D'Errico le 24 Mai 2016
Definitely the case. Anyway, solve would surely fail to find a solution, though vpasolve might succeed.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Communications Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by