Area under a curve
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I want to calculate the area of this curve. y = [0 1 3 -1 -2 -3 -1 0];
I know a portion of the curve has negative value, so my solution is make all the y values absolute. But then the area of absolute y will be higher. Can anyone help me?

Thanks.
0 commentaires
Réponses (3)
Star Strider
le 4 Juil 2016
The problem wasn’t immediately obvious to me. You need to find the zero-crossing, and then add the two separate areas:
y = [0 1 3 -1 -2 -3 -1 0];
x = 1:length(y);
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) < 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
yzxi = zci(y); % Zero-Crossing Index
x0 = interp1(y(yzxi:yzxi+1), x(yzxi:yzxi+1), 0); % Interpolate To Find Zero-Crossing
AUC = polyarea([x(1:yzxi) x0], [y(1:yzxi) 0]) + polyarea([x0 x(yzxi+1:end)], [0 y(yzxi+1:end)]);
INT = trapz(x, abs(y)) % Compare (Optional)
AUC =
10.2500
INT =
11.0000
I used the polyarea function rather than the integration functions. If you have a more complicated function, this will work as well, but you will have to make the appropriate changes to the code. (I included the trapz function integration of the absolute value for comparison.)
2 commentaires
Star Strider
le 5 Juil 2016
Yes.
You simply have to find each one, calculate the zero-crossing, and do polyarea for each segment.
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!