almost-autnomous differential equation

2 vues (au cours des 30 derniers jours)
Bob
Bob le 23 Juil 2016
Commenté : Star Strider le 24 Juil 2016
y' = y^2 − t. This differential equation has “stationary” solutions, but unlike with an autonomous equation, those stationary solutions are not horizontal. Vary the initial condition y(0) = c for a bit to try to get a sense of what the solutions look like. (Picking values between −3 and +3 should be good enough.)
Part A: There’s a value P such that, if y(0) < P, then the solution to the initial value problem decreases, while if y(0) > P, the solution to the initial value problem increases. Figure out what P is to two decimal places.
Attempted code:
syms y(t);
for c = -3:1:3
fc = dsolve('Dy = y^2 - t' , y(0) == c);
end
Not sure how I get it to print out an answer for p and get it to be for p to two decimal places.

Réponse acceptée

Star Strider
Star Strider le 23 Juil 2016
Modifié(e) : Star Strider le 23 Juil 2016
You need to solve it symbolically, but then you can use the matlabFunction function to create an anonymous function from it:
syms y(t) c
fc(t,c) = dsolve(diff(y) == y^2 - t, y(0) == c);
fc_fcn = matlabFunction(fc)
fc_fcn = @(t,c) -(airy(3,t)+((sqrt(3.0).*gamma(2.0./3.0).^2.*3.0+3.0.^(2.0./3.0).*c.*pi.*2.0).*airy(1,t))./(gamma(2.0./3.0).^2.*3.0-3.0.^(1.0./6.0).*c.*pi.*2.0))./(airy(2,t)+((sqrt(3.0).*gamma(2.0./3.0).^2.*3.0+3.0.^(2.0./3.0).*c.*pi.*2.0).*airy(0,t))./(gamma(2.0./3.0).^2.*3.0-3.0.^(1.0./6.0).*c.*pi.*2.0));
You also need to decide on an appropriate range for ‘t’ if you haven’t already been given one. It might be easier to use a ribbon plot for this until you home in on the correct value for ‘c’.
  8 commentaires
Bob
Bob le 24 Juil 2016
Does this provide me with a value of c though.
Star Strider
Star Strider le 24 Juil 2016
Not directly, but since I don’t understand what behaviour the particular value of ‘c’ is supposed to do, it should give you a way of determining the behaviour you’re looking for.
You can also plot the derivative (Jacobian) with meshc or contour if that would help:
t = linspace(0, 5, 50);
c = linspace(-3, 3, 50);
[T,C] = meshgrid(t,c);
fc_fcn = @(t,c) -(airy(3,t)+((sqrt(3.0).*gamma(2.0./3.0).^2.*3.0+3.0.^(2.0./3.0).*c.*pi.*2.0).*airy(1,t))./(gamma(2.0./3.0).^2.*3.0-3.0.^(1.0./6.0).*c.*pi.*2.0))./(airy(2,t)+((sqrt(3.0).*gamma(2.0./3.0).^2.*3.0+3.0.^(2.0./3.0).*c.*pi.*2.0).*airy(0,t))./(gamma(2.0./3.0).^2.*3.0-3.0.^(1.0./6.0).*c.*pi.*2.0));
dfc_fcn = gradient(fc_fcn(T, C));
figure(1)
contour(T, C, dfc_fcn, 50)
grid on
xlabel('t')
ylabel('c')

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by