How i can convert discrete filter to continuous transfer function?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
b0 = 12.575612; b1 = -18.9426445; b2 = 6.4607418;
b = [b0 b1 b2];
a0 = 1.7892133; a1 = -0.7892133; a2 = 0;
a = [a0 a1 a2];
hq = dfilt.df1(b,a,);
How i can convert discrete filter to continuous transf
I need sys = tf(hq);
It not working. Is it possible to convert? If is possible, then how?
0 commentaires
Réponses (1)
Star Strider
le 28 Nov 2016
You need to ‘invert’ the bilinear transform using the Symbolic Math Toolbox, then solve:
syms H(s) T z Z
assume(T > 0)
Eq = s == 2/T * (z - 1)/(z + 1);
Z = solve(Eq, z)
b0 = 12.575612;
b1 = -18.9426445;
b2 = 6.4607418;
b = [b0 b1 b2];
bz = poly2sym(b, z)
bs = subs(bz,z,Z)
bs = vpa(expand(simplify(bs, 'Steps', 10)), 5)
a0 = 1.7892133;
a1 = -0.7892133;
a2 = 0;
a = [a0 a1 a2];
az = poly2sym(a, z)
as = subs(az,z,Z)
as = vpa(expand(simplify(as, 'Steps', 10)), 5)
producing:
bs = (176.38*T*s)/(T^2*s^2 - 4.0*T*s + 4.0) - 151.54/(T^2*s^2 - 4.0*T*s + 4.0) + 37.979
as = (17.471*T*s)/(T^2*s^2 - 4.0*T*s + 4.0) - 6.3137/(T^2*s^2 - 4.0*T*s + 4.0) + 2.5784
The ‘T’ variable is the sampling interval (inverse of the sampling frequency). Substitute your actual sampling interval for ‘T’, then use the numden and sym2poly functions (in that order) to create your polynomials to give to the Control System Toolbox tf function.
I leave prewarping and other design decisions to you. Incorporate it as necessary.
0 commentaires
Voir également
Catégories
En savoir plus sur Dynamic System Models dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!