How to calculate the equation with letter and variable
89 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Dear everyone,
I want to calculate an equation with letter and variable.
Now I can get the variable value presented with the letters I used
but I don't know how to change the letters as real numbers.
this is the example
%declear syms
syms x0 y0 x1 y1 x2 y2 a b p q d positive;
[x0 y0] = solve('(x-p)^2+(y-q)^2=d^2','(p-a)*(y-b)=(x-a)*(q-b)')
then I can get the result
but the problem is how to enter the real number value of letters like
a = 1;
b = 2;
p = 3;
q = 4;
d = 5;
then I can get the numerical value of x, y ???
1 commentaire
Réponse acceptée
Star Strider
le 4 Mai 2017
The substitution will occur automatically. The problem is that you must put ‘x’, ‘x0’ and ‘y0’ in the equations you want to solve for them.
This will do the substitutions:
syms x0 y0 x1 y1 x2 y2 a b p q d positive
a = 1;
b = 2;
p = 3;
q = 4;
d = 5;
Eq1 = (x-p)^2+(y-q)^2==d^2;
Eq2 = (p-a)*(y-b)==(x-a)*(q-b);
[x0 y0] = solve(Eq1, Eq2);
9 commentaires
Walter Roberson
le 7 Mai 2017
HONG CHENG comments on Star Strider's Answer:
kind and big god in MATLAB
Plus de réponses (1)
Karan Gill
le 9 Mai 2017
Modifié(e) : Stephen23
le 17 Oct 2017
Use subs to substitute values, as shown below. You only get one solution because in the other solution, "x" is negative, which is not allowed due to the assumption that it is positive.
BUT if don't substitute values before solving, then you get two solutions because the second solution can be positive under certain conditions. "solve" also issues a warning stating that conditions apply to the solutions. If you use the "ReturnConditions" option, then you get these conditions. Applying these conditions will let you find correct values. See the doc: https://www.mathworks.com/help/symbolic/solve-an-algebraic-equation.html.
syms x y a b p q d positive
eqn1 = (x-p)^2+(y-q)^2 == d^2;
eqn2 = (p-a)*(y-b) == (x-a)*(q-b);
vars = [a b p q d];
vals = sym([1 2 3 4 5]);
eqn1 = subs(eqn1,vars,vals);
eqn2 = subs(eqn2,vars,vals);
[xSol ySol] = solve(eqn1, eqn2)
xSol =
(5*2^(1/2))/2 + 3
ySol =
(5*2^(1/2))/2 + 4
Lastly, do not redeclare symbolic variables as doubles because you are overwriting them. So don't do this.
syms a
a = 1
Just do
a = 1
Or use "subs" to substitute for "a" in an expression
f = a^2
subs(f,a,2)
Karan (Symbolic doc)
3 commentaires
Karan Gill
le 9 Mai 2017
Glad to hear that! If my answer was helpful, could you accept it so that others can find the reason.
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!