# Data segmentation for Accelerometer time series data

9 vues (au cours des 30 derniers jours)
Manas Gupte le 30 Nov 2017
I have time series data collected from a cellphone accelerometer sampled at 500Hz. The data is collected from the phone of a wheelchair user as he goes over a platform of a certain thickness. The abrupt change in height causes spikes in the data stream which is the event. Each sample has two events, the user going up the platform and when he comes down the platform. What would be a good way to filter noise and perform data segmentation?
##### 10 commentairesAfficher 8 commentaires plus anciensMasquer 8 commentaires plus anciens
Star Strider le 30 Nov 2017
We need discrete sampling times.
We should not have to guess.
Manas Gupte le 3 Déc 2017
@Star Strider&@Kaushik Lakshminarasimhan Sorry guys! Didn't have a net connection for the past two days. The fourth column is the time stamp. The data file information reads that the minimum delay between observations is 2ms. I'm a beginner in signal processing. I'm assuming that this could be treated as the sampling frequency (2ms=500Hz)? The data points enclosed by the two set of blue vertical lines are the part of the time series that I want to segment. The initial spikes are from acceleration of the wheel chair. The ones within the blue lines are from the wheelchair going up a .75in step and the second one if from the wheelchair going down the step. I used a manual wheelchair to collect the data.

Connectez-vous pour commenter.

### Réponses (2)

Philipp Doblhofer le 29 Déc 2017
Hello,
one simple option is to set a threshold value for the signal power of your data. To reduce the noise level you can apply for example a moving average filter.
close all
clc
% Width of the moving average window (filter)
window_width = 50;
% Threshold level for the signal energy
threshold = 0.005;
% Remove constant offset from data and normalize
data(:,3) = data(:,3) - mean(data(:,3));
data(:,3) = data(:,3)/max(data(:,3));
% Calculate signal power
signal_power = data(:,3).^2;
% filtered data
filtered_signal_power = movmean(signal_power, window_width);
% event detection
event = filtered_signal_power > threshold;
plot(data(:,3))
hold on
plot(event)
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

Chris Turnes le 2 Fév 2018
For the segmentation, if you have R2017b, the new ischange function should help to separate the events.
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

### Catégories

En savoir plus sur Time Series Events dans Help Center et File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by