fsolve for 2 equation with 2 variables
    3 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
    Miroslav Mitev
 le 13 Déc 2017
  
    
    
    
    
    Commenté : Star Strider
      
      
 le 13 Déc 2017
            Here is my function, in order to shorten the expression here I add A and B, but in my original function they are inside F(1) and F(2) (i.e. that is not the problem), this is the error I get: Objective function is returning undefined values at initial point.
function F = myfun(x)
N=32;
K=5;
s=1;
b=0.1;
P=5;
A=-2*s^4*x(1)*N+2*s^4*x(1)*K+3*s^2*x(2)*log(2);
B=sqrt(8)*x(2)*s^2*log(2);
g=exprnd(1,1,N-K); 
F(1) = sum((g.*(1-b*x(1))/(x(2)*log(2)))-1./g)+(N-K)*((A+sqrt(A^2-B^2))/((4*s^2/sqrt(8))*B))-N*P;
F(2) = b*(sum(log2((g*(1-b*x(1)/x(2)*log(2))))))-(N-K)*log2(1+(2*A^2+2*A*sqrt(A^2-B^2)-B^2)/((4/sqrt(8))*B*(A+(4/sqrt(8))*B+sqrt(A^2-B^2))));
end
0 commentaires
Réponse acceptée
  Star Strider
      
      
 le 13 Déc 2017
        What is the initial point you chose? Your function returns finite values for random non-zero arguments. It returns [NaN NaN] for [0 0] as an input.
The solution is most likely to use an initial point other than [0 0]. I would use rand(2,1).
7 commentaires
  Matt J
      
      
 le 13 Déc 2017
				Since it is only a function of 2 variables, you could do a coarse surf() plot of norm(F) and find visually where the roots approximately lie. This would give you a better initial guess than simply randomizing.
  Star Strider
      
      
 le 13 Déc 2017
				My pleasure.
It might be useful for you to post the symbolic expression you are coding as well as your code for it as a new Question, since that seems to be the problem.
Plus de réponses (0)
Voir également
Catégories
				En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


