Getting error in the surfc plotting
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Mukul
le 20 Mai 2018
Modifié(e) : Walter Roberson
le 22 Juin 2018
Tn = 100;
ns = 30;
alpha = 0
beta = 0
gama = 0
phi1 = linspace(-Tn,Tn,ns);
phi2 = linspace(-Tn,Tn,ns);
phi3 = linspace(-Tn,Tn,ns);
%Phase Angle Mesh-Grid
[phi_1,phi_2,phi_3] = meshgrid(phi1,phi2,phi3);
phi_12 = phi_2 - phi_1;
phi_21 = phi_1 - phi_2;
phi_13 = phi_3 - phi_1;
phi_31 = phi_1 - phi_3;
phi_23 = phi_3 - phi_2;
phi_32 = phi_2 - phi_3;
k11 = 917.3770;
k22 = 917.3770;
k33 = 917.3770;
k12 = 458.6885;
k13 = 458.6885;
k23 = 458.6885;
X = -(k12.*cos(alpha*pi*n/360).*cos(beta*pi*n/360).*sin(phi_12*pi*n/180))-(k13.*cos(alpha*pi*n/360).*cos(gama*pi*n/360).*sin(phi_13*pi*n/180))
Y = -(k12.*cos(alpha*pi*n/360).*cos(beta*pi*n/360).*sin(phi_21*pi*n/180))+(k23.*cos(beta*pi*n/360).*cos(gama*pi*n/360).*sin(phi_23*pi*n/180))
Z = -(k13.*cos(alpha*pi*n/360).*cos(gama*pi*n/360).*sin(phi_31*pi*n/180))+(k23.*cos(beta*pi*n/360).*cos(gama*pi*n/360).*sin(phi_32*pi*n/180))
figure(1);
surfc(phi_12,phi_13,X); colorbar;
figure(2);
surfc(phi_21,phi_23,Y); colorbar;
figure(3);
surfc(phi_31,phi_32,Z); colorbar;
Getting the following error:
Error using matlab.graphics.chart.primitive.Surface/set
Value must be a vector or 2D array of numeric type
Error in matlab.graphics.chart.internal.ctorHelper (line 8)
set(obj, pvpairs{:});
Error in matlab.graphics.chart.primitive.Surface
Error in surf (line 150)
hh = matlab.graphics.chart.primitive.Surface(allargs{:});
Error in surfc (line 53)
hs = surf(cax, args{:});
Error in (line 68)
surfc(phi_12,phi_13,X); colorbar;
can anyone please help me fixing this error?
6 commentaires
Réponse acceptée
Walter Roberson
le 20 Mai 2018
You need to use isosurface() instead of surfc()
10 commentaires
Walter Roberson
le 20 Juin 2018
I don't think they should be the same. You are defining coordinates parametrically in different ways, and I see no reason why the shapes should all have the same angle when converted to one fixed set of coordinates.
I think that it is more likely that you can choose different coordinate basis that would make a different pair of the two look the same, and a third coordinate basis that make the remaining pair look the same -- each time there being one that looked different.
Using phi_12(:), phi_13(:) as a consistent arbitrary projection affects how the shapes look. Why should that pair of coordinates for the projection be any more right than, say, phi_23(:), phi_13(:) ?
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Surface and Mesh Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!