Assistance plotting radiation pattern

1 vue (au cours des 30 derniers jours)
Yuval
Yuval le 4 Juin 2018
Commenté : Star Strider le 5 Juin 2018
I am trying to make a polar plot using the following code yet it doesn't come out as smooth as desired. I'd appreciate some further guidance:
P = [-65,-67,-66,-68.2,-67,-67,-66,-65,-63,-62,-52,-42,-41.5,-47.39,-60.5,-61.7,-63.35,-67,-65.2,-66.1,-71,-67,-67,-68,-65,-65];
A = [-180,-165,-150,-135,-120,-105,-90,-75,-60,-45,-30,-15,0,15,30,39,45,60,75,90,105,120,135,150,165,180];
G = P+10;
polarplot(A*pi/180,abs(G));

Réponse acceptée

Star Strider
Star Strider le 4 Juin 2018
I’m not certain what result you want.
One option is to interpolate your data:
Ai = linspace(min(A), max(A), 360);
Gi = interp1(A, G, Ai, 'spline');
figure
polarplot(Ai*pi/180,abs(Gi));
You will need to experiment with that to get the appropriate result.
  8 commentaires
Yuval
Yuval le 5 Juin 2018
The attachment shows a regular Cartesian plot of the same P+41.5 vs. the angle. As you can see the gain is not always positive, as in the polar plot. The gain is expected to be negative too, especially when normalized wrt the maximum power, viz. -41.5. Was this more helpful? Any ideas?
Star Strider
Star Strider le 5 Juin 2018
No ideas.
I was helping you with or original question, and plotting your vectors. Antenna theory is far from my areas of expertise.
The idea of ‘negative gain’ is essentially attenuation. This only makes sense if the units are dB, since negative in that sense simply means fractional.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Antennas and Electromagnetic Propagation dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by