compute determinant using Cholesky decomposition

11 vues (au cours des 30 derniers jours)
Gaurav Gupta
Gaurav Gupta le 13 Juin 2012
Commenté : youtha le 5 Jan 2019
I need to compute determinant of a positive definite, hermitian matrix in fastest way for my code. So the best way is to compute by cholesky decomposition, but on writing code for it there is no improvement over MATLAB built-in function "det" which is based on LU decomposition (more complex than cholskey). Can anyone help, can we modify matlab buit-in function "chol" to determine determinant from it directly.
  2 commentaires
Gaurav Gupta
Gaurav Gupta le 14 Juin 2012
Can MATLAB people help me with this
youtha
youtha le 5 Jan 2019
Try using
:)
L=chol(A)
p=1;
for i=1:n
p=p*L(i,i)^2
end

Connectez-vous pour commenter.

Réponses (2)

Walter Roberson
Walter Roberson le 13 Juin 2012
Keep in mind that for sufficiently large matrices, MATLAB is going to invoke multi-threaded library code that has been heavily optimized for the target architectures. (It doesn't do that for smaller matrices because there is notable overhead in re-arranging the arrays into the form required by those libraries.)

Teja Muppirala
Teja Muppirala le 14 Juin 2012
You could try
prod(diag(chol(A)))^2
But I have no idea if/when this would be faster than simply det(A).
  1 commentaire
Gaurav Gupta
Gaurav Gupta le 14 Juin 2012
I have tried this before posting question, but there is no improvement over time.

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by