How do I vectorize the loop for the local linear regression?
14 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am currently writing code for the project that my professor is thinking of, and this involves writing code for local linear regression and Nadaraya-Watson regression. The first code that I wrote uses a loop for the NW estimator and the local linear regression estimator.
% This code simulates the local linear estimator and NW kernel.
% Generating noisy data. (I use the same as the example in the Lo paper.)
x=linspace(0,4*pi,100);
y=sin(x)+0.5*randn(size(x));
% Set up the space to store the estimates.
yhatnw=zeros(size(x));
yhatll=zeros(size(x));
n=length(x);
% Set up the bandwidth.
hx=median(abs(x-median(x)))/0.6745*(4/3/n)^0.2;
hy=median(abs(y-median(y)))/0.6745*(4/3/n)^0.2;
h=sqrt(hy*hx);
% Find smooth at each value of x.
for i=1:n
w=wfun(h,x(i),x);
xc=x-x(i);
s2=mean(xc.^2.*w);
s1=mean(xc.*w);
s0=mean(w);
yhatnw(i)=sum(w.*y)/sum(w); % Nadaraya-Watson kernel
yhatll(i)=sum(((s2-s1*xc).*w.*y)/(s2*s0-s1^2))/n; % local linear estimator
end
plot(x,y,'.',x,yhatnw,'-',x,yhatll,':')
The corresponding weighting function is:
function w=wfun(h,mu,x);
w=exp((-1/2)*(((x-mu)/h).^2))/sqrt(2*pi*h^2);
I tried to vectorize the code, and it works for the NW estimator (since I am getting the same graph), but not for the local linear estimator (the graph with the loop is better than that of the matrix). The relevant code (for the local linear estimator) is here:
% Evaluating the weighting matrix.
xi=ones(n,1)*x;
data=x'*ones(1,n);
w=wfun(h,xi,data);
% % Local linear regression
xc=data-xi;
s2=mean(xc.^2.*w);
s1=mean(xc.*w);
s0=mean(w);
s2i=ones(n,1)*s2;
s1i=ones(n,1)*s1;
s0i=ones(n,1)*s0;
yhatll=sum(((s2i-s1i*xc).*w.*yi)'./(s2i*s0i-(s1i^2)))/n;
I think there is something wrong with the way I am vectorizing the local linear regression, but I am unsure, so I'd like to ask all of you. Thanks!
2 commentaires
bym
le 24 Juil 2012
I think your post is missing the definition of yi, which sidetracked me for awhile. Please confirm that yi is defined something like
yi = repmat(y,100,1);
Réponses (1)
Andrei Bobrov
le 25 Juil 2012
Modifié(e) : Andrei Bobrov
le 25 Juil 2012
xc = bsxfun(@minus,x',x);
w = exp(-.5*(xc/h).^2)/sqrt(2*pi*h^2);
xw = xc.*w;
s0 = mean(w);
s1 = mean(xw);
s2 = mean(xw.*xc);
yhatnw = sum(bsxfun(@times,w,y'))./sum(w);
yhatll = sum(...
bsxfun(@rdivide,...
bsxfun(@times,...
bsxfun(@minus,s2,...
bsxfun(@times,xc,s1)).*w,y'),s2.*s0 - s1.^2))/n;
or your variant
[ii,jj] = meshgrid(1:n);
xc = x(jj)-x(ii);
w=exp( -1/2*(xc/h).^2 )/sqrt(2*pi*h^2);
s2=mean(xc.^2.*w);
s1=mean(xc.*w);
s0=mean(w);
yhatll3=sum(((s2(ii)-s1(ii).*xc).*w.*y(jj))./(s2(ii).*s0(ii)-s1(ii).^2))/n;
3 commentaires
Image Analyst
le 24 Nov 2024
@Carlo Grillenzoni, what is "Nadaraya-Watson regression" and why do you want that specific denoising algorithm? There are lots of denoising algorithms for 2-D matrices/images. How about a simple averaging via convolution, or a median filter via stdfilt? Or there are lots of other algorithms like nonlocal means (there is a MATLAB function for that) or BM3D. See "A tour of modern image filtering": https://users.soe.ucsc.edu/~milanfar/publications/journal/ModernTour.pdf
Carlo Grillenzoni
le 25 Nov 2024
I need a simple MatLab implementation of Bivariate Local Linear Regression (LLR)
for sparse spatial points, and for my further methodological developments, CG
Voir également
Catégories
En savoir plus sur Linear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!