How would I enter the Differential Equation y''+100y=2sin(4t)

2 vues (au cours des 30 derniers jours)
Andrew Serrano
Andrew Serrano le 5 Mai 2019
the correct answer should be C1cos10t + C2sin10t + (1/42)sin4t
I tried this code and got a crazy answer.
dsolve ('D2y+100*y=2*sin(4*t)','t')
ans =
(3*sin(8*t)*((6*cos(4*t))/35 + (2*cos(8*t))/35 + 11/105))/8 - (sin(4*t)*((6*cos(4*t))/35 + (2*cos(8*t))/35 + 11/105))/8 - (3*sin(12*t)*((6*cos(4*t))/35 + (2*cos(8*t))/35 + 11/105))/8 + (sin(16*t)*((6*cos(4*t))/35 + (2*cos(8*t))/35 + 11/105))/8 + sin(10*t)*(cos(6*t)/60 - cos(14*t)/140) + C9*cos(10*t) - C10*sin(10*t)

Réponses (2)

Omer N
Omer N le 5 Mai 2019
Try like so:
syms y(t)
simplify( dsolve(diff(y,2)+100*y==2*sin(4*t),t) )
ans =
sin(4*t)/42 + C1*cos(10*t) - C2*sin(10*t)

Star Strider
Star Strider le 5 Mai 2019
Use the simplify function:
syms t y(t) Dy0 y0
Dy = diff(y);
D2y = diff(y,2);
Eqn = D2y + 100*y == 2*sin(4*t);
ys = dsolve(Eqn, Dy(0)==Dy0, y(0)==y0);
ys = simplify(ys, 'Steps',50)
producing:
ys =
sin(4*t)/42 - sin(10*t)/105 + y0*cos(10*t) + (Dy0*sin(10*t))/10
I specified the initial conditions here, so they will appear as ‘y0’ and ‘Dy0’ in the integrated equation.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by