Runge-Kutta 4th order method

574 vues (au cours des 30 derniers jours)
Mariam Gasra
Mariam Gasra le 5 Mai 2019
Commenté : Saman le 5 Déc 2024
% It calculates ODE using Runge-Kutta 4th order method
% Author Ido Schwartz
clc; % Clears the screen
clear;
h=5; % step size
x = 0:h:100; % Calculates upto y(3)
Y = zeros(1,length(x));
y(1) = [-0.5;0.3;0.2];
% initial condition
F_xy = @(t,r) 3.*exp(-t)-0.4*r; % change the function as you desire
for i=1:(length(x)-1) % calculation loop
k_1 = F_xy(x(i),y(i));
k_2 = F_xy(x(i)+0.5*h,y(i)+0.5*h*k_1);
k_3 = F_xy((x(i)+0.5*h),(y(i)+0.5*h*k_2));
k_4 = F_xy((x(i)+h),(y(i)+k_3*h));
y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h; % main equation
end
display(Y(i+1));
if i run the programme i get answer =0;
how can i solve this problem if i have three initial condition -0.5 ,0.3 and 0.2
while x=0:5:100
and how i can plot the answer with respect to x?
  2 commentaires
Naveen
Naveen le 5 Mai 2024
what can be done if functions are very large?
Torsten
Torsten le 5 Mai 2024
Modifié(e) : Torsten le 5 Mai 2024
Define them as a function instead of a function handle:

Connectez-vous pour commenter.

Réponse acceptée

David Wilson
David Wilson le 6 Mai 2019
Modifié(e) : MathWorks Support Team le 18 Avr 2023
First up, you will need a much smaller step size to get an accurate solution using this explicit RK4 (with no error control). I suggest h = 0.05. Validate using say ode45 (which does have error control).
Then you will need to run your ode above three separate times, once starting from y(1) = -0.5, again with y(1) = 0.3, etc.
Then finally plot the result with plot(x,y,'o-').
h=0.05; % step size
x = 0:h:100; % Calculates upto y(3)
y = zeros(1,length(x));
%y(1) = [-0.5;0.3;0.2];
y(1) = -0.5; % redo with other choices here.
% initial condition
F_xy = @(t,r) 3.*exp(-t)-0.4*r; % change the function as you desire
for i=1:(length(x)-1) % calculation loop
k_1 = F_xy(x(i),y(i));
k_2 = F_xy(x(i)+0.5*h,y(i)+0.5*h*k_1);
k_3 = F_xy((x(i)+0.5*h),(y(i)+0.5*h*k_2));
k_4 = F_xy((x(i)+h),(y(i)+k_3*h));
y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h; % main equation
end
% validate using a decent ODE integrator
tspan = [0,100]; y0 = y(1);
[tx, yx] = ode45(F_xy, tspan, y0);
plot(x,y,'o-', tx, yx, '--')
  4 commentaires
Walter Roberson
Walter Roberson le 14 Nov 2022
the code would need to be adjusted slightly if the ode function has more than one state (and so returns a vector.)
Presley
Presley le 31 Juil 2023
Thanks, it was helpful

Connectez-vous pour commenter.

Plus de réponses (6)

Sandip Das
Sandip Das le 28 Juil 2021
%Published in 25 July 2021
%Sandip Das
clc;
clear all;
dydt=input('Enter the function : \n');
t0=input('Enter the value of t0 : \n');
y0=input('Enter the value of y0 : \n');
tn=input('Enter the value of t for which you want to find the value of y : \n');
h=input('Enter the step length : \n');
i=0;
while i<tn
k_1 = dydt(t0,y0);
k_2 = dydt(t0+0.5*h,y0+0.5*h*k_1);
k_3 = dydt((t0+0.5*h),(y0+0.5*h*k_2));
k_4 = dydt(((t0)+h),(y0+k_3*h));
nexty = y0 + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h;
y0=nexty
t0=t0+h
i=i+h;
end
fprintf('The value of y at t=%f is %f',t0,y0);

mahmoud mohamed abd el kader
function [x,y] = rk4th(dydx,xo,xf,yo,h)
x = xo:h:xf ;
y = zeros(1,length(x));
y(1)= yo ;
for i = 1:(length(x)-1)
k_1 = dydx(x(i),y(i));
k_2 = dydx(x(i)+0.5*h,y(i)+0.5*h*k_1);
k_3 = dydx((x(i)+0.5*h),(y(i)+0.5*h*k_2));
k_4 = dydx((x(i)+h),(y(i)+k_3*h));
y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h;
end
dydx = @(x,y) 3.*exp(-x)-0.4*y;
%[x,y] = rk4th(dydx,0,100,-0.5,0.5);
%plot(x,y,'o-');
end
  3 commentaires
soham roy
soham roy le 8 Déc 2022
What modifications do we need to make in this code to solve 3 ODEs with different initial conditions?
Walter Roberson
Walter Roberson le 8 Déc 2022
y = zeros(1,length(x));
would change to
y = zeros(length(x), length(y0));
and below that, each y(INDEX) would be replaced with y(INDEX,:)

Connectez-vous pour commenter.


Mj
Mj le 7 Nov 2020
Hello everyone!
I have to solve this second order differential equation by using the Runge-Kutta method in matlab:
can anyone help me please? and how can i plot the figure?(a against e)
d2a/de2=(((((2+c2)*(Fu^2))/(1+c2))+1)*(a^c2)-((2+c2/1+c2)*(Fu^2/a))-a^(2+(2*c2)))/(((2+c2)*Fu^2)/(1+c2)*(3+c2));
Fu=1
c2=0 , 0.5 , 1 (there are 3 values for c2)
initial conditions are: a=0.8 , d_a=
  1 commentaire
Mj
Mj le 9 Nov 2020
????

Connectez-vous pour commenter.


David Wilson
David Wilson le 6 Mai 2021
Wow, you haven't given us too much to go on, so that makes a real challenge.
First up, your 2nd order ODE is needlessly complex given that Fu=1, and c2 =0 say. (I'm not sure what the other valuesare for, Are you solving this 3 seprate times? (Be good to know if that is the case.)
If you have the symbolic toolbox, it makes it easy to simplify your problem to something doable. First up, I'm going to try and solve it analytically.
syms Fu c2 real
syms a(t)
f2 = (((((2+c2)*(Fu^2))/(1+c2))+1)*(a^c2)-((2+c2/1+c2)*(Fu^2/a))-a^(2+(2*c2)))/(((2+c2)*Fu^2)/(1+c2)*(3+c2));
f2_a = subs(f2,Fu,1)
f2_a(t) = 
f2_b = subs(f2_a,c2,0) % subs c2 for 0
f2_b(t) = 
Da = diff(a);
D2a = diff(a,2);
% Now attempt to solve analytically
dsolve(D2a == f2_b, a(0) == 0.8, Da(0) == 1)
Warning: Unable to find symbolic solution.
ans = [ empty sym ]
Well that didn't work, but no real suprise there.
Let's try a numerical method:
syms Fu c2 real
syms a real
f2 = (((((2+c2)*(Fu^2))/(1+c2))+1)*(a^c2)-((2+c2/1+c2)*(Fu^2/a))-a^(2+(2*c2)))/(((2+c2)*Fu^2)/(1+c2)*(3+c2));
f2_a = subs(f2,Fu,1); f2_b = subs(f2_a,c2,0); pretty(f2_b)
2 1 a 1 - - -- - --- 2 6 3 a
We need to encode this as a system of 2 ODES. (Convert to Cauchy form)
aprime = @(t,a) [a(2); ...
0.5 - a(1).^2/6 - 1./(a(1)*3)]
Now we are ready to solve the ODE. I'll use ode45, and guess a t-span, and guess one of the initial conditions since you forgot to help us out there.
aprime = @(t,a) [a(2); ...
0.5 - a(1).^2/6 - 1./(a(1)*3)]
a0 = [0.8; 0]
[t,a] = ode45(aprime, [0,4], a0)
plot(t,a)

Amr Mohamed
Amr Mohamed le 9 Mai 2021
how can we write the code for this problem :
  3 commentaires
Amr Mohamed
Amr Mohamed le 8 Juin 2021
Thanks sir
Saman
Saman le 5 Déc 2024
Plz answer these question of code

Connectez-vous pour commenter.


monsef
monsef le 17 Juil 2023
y=x^2-2yx
h=0.2
y0=0
x0=1
wriet program im mathlab
  1 commentaire
Ahmed J. Abougarair
Ahmed J. Abougarair le 24 Mar 2024
clc;
clear all;
F = @(t,y) 4*exp(0.8*t)-0.5*y
t0=input('Enter the value of t0 : \n');
y0=input('Enter the value of y0 : \n');
tn=input('Enter the value of t for which you want to find the value of y : \n');
h=input('Enter the step length : \n');
i=0;
while i<tn
k_1 = F(t0,y0);
k_2 = F(t0+0.5*h,y0+0.5*h*k_1);
k_3 = F((t0+0.5*h),(y0+0.5*h*k_2));
k_4 = F(((t0)+h),(y0+k_3*h));
nexty = y0 + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h;
y0=nexty;
t0=t0+h;
i=i+h;
end
fprintf('The value of y at t=%f is %f \n',t0,y0)
% validate using a decent ODE integrator
tspan = [0,1]; Y0 = 2;
[tx,yx] = ode45(F, tspan, Y0);
fprintf('The true value of y at t=%f is %f \n',tspan(end),yx(end))
Et= (abs(yx(end)-y0)/yx(end))*100;
fprintf('The value of error Et at t=%f is %f%% \n',tspan(end),Et)

Connectez-vous pour commenter.

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by