Info
Cette question est clôturée. Rouvrir pour modifier ou répondre.
Write a function called minimax that takes M, a matrix input argument and returns mmr, a row vector containing the absolute values of the difference between the maximum and minimum valued elements in each row. As a second output argument called mmm,
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Write a function called minimax that takes M, a matrix input argument and returns mmr, a row vector containing the absolute values of the difference between the maximum and minimum valued elements in each row. As a second output argument called mmm, it provides the difference between the maximum and minimum element in the entire matrix. See the code below for an example:
>> A = randi(100,3,4) %EXAMPLE
A =
66 94 75 18
4 68 40 71
85 76 66 4
>> [x, y] = minimax(A)
x =
76 67 81
y =
90
%end example
%calling code: [mmr, mmm] = minimax([1:4;5:8;9:12])
Is my logic correct?
my approach
function [a,b]= minimax(M)
m=M([1:end,0);
a= [abs(max(M(m))-min(M(m)))];
b= max(M(:)) - min(M(:));
end
15 commentaires
Réponses (14)
mayank ghugretkar
le 5 Juin 2019
here's my function....
went a little descriptive for good understanding to readers.
function [a,b]=minimax(M)
row_max=max(M');
overall_max=max(row_max);
row_min=min(M');
overall_min=min(row_min);
a=row_max - row_min;
b=overall_max-overall_min;
Code to call your function
[mmr, mmm] = minimax([1:4;5:8;9:12])
5 commentaires
Purushottam Shrestha
le 8 Juin 2020
We need to transpose because max(M.') gives a row vector of maximum elements of each row. I want you to try by giving command >>max(A.') Then you can see clearly.
Stephen23
le 17 Juil 2020
"We need to transpose because max(M.') gives a row vector of maximum elements of each row."
In some specific cases it will, but in general it does not.
"I want you to try by giving command >>max(A.') Then you can see clearly."
Okay, lets take a look:
>> A = [1;2;3]
A =
1
2
3
>> max(A.')
ans = 3
I can clearly see that this does NOT give the maximum of each row of A.
Arooba Ijaz
le 1 Mai 2020
function [mmr,mmm] =minimax (M)
%finding mmr
a=M'
b=max(a)
c=min(a)
mmr=b-c
%finding mmm
d=max(M)
e=max(d)
f=min(M)
g=min(f)
mmm=e-g
3 commentaires
Walter Roberson
le 9 Juin 2020
M is two dimensional. When you take max() of a two-dimensional matrix, then by default the maximum is taken for each column, so you would go from an m x n matrix to a 1 x n matrix of output. Then max() applied to that 1 x n matrix would take the maximum of those values, giving you a 1 x 1 result.
Rik
le 9 Juin 2020
This is done, because max only operates on a single dimension. Starting from R2018b you can specify a vector of dimensions, or use the 'all' keyword, see the documentation. In this answer they probably should have written max(M(:)) instead. I don't know who upvoted this function, as it is undocumented and takes a strange path to an answer.
Nisheeth Ranjan
le 28 Mai 2020
function [mmr,mmm]=minimax(A)
mmt=[max(A,[],2)-min(A,[],2)];
mmr=mmt'
mmm=max(max(A))-min(min(A))
This is the easiest code you cold ever find. Thank me later.
5 commentaires
Geoff Hayes
le 27 Mai 2019
Modifié(e) : Geoff Hayes
le 27 Mai 2019
Is my logic correct?
I'm not clear on why you need the m. In fact, doesn't the line of code
m=M([1:end,0);
fail since there is no closing square bracket? What is the intent of this line?
4 commentaires
RAHUL KUMAR
le 8 Mai 2020
function [mmr mmm] = minimax(M);
mmr = (max(M,[],2) - min(M,[],2))';
mmm = max(M(:))-min(M(:));
end
Sahil Deshpande
le 30 Mai 2020
function [mmr,mmm] = minimax(M)
mmr = abs(max(M.')-min(M.'));
mmm = max(max(M)) - min(min(M));
I did it this way
pradeep kumar
le 26 Fév 2020
function [mmr,mmm]=minimax(M)
mmr=abs(max(M')-min(M'));
mmm=(max(max(M'))-min(min(M')))
end
Rohan Singla
le 17 Avr 2020
function [mmr,mmm] = minimax(M)
a=M';
mmr=max(a,[],1)-min(a,[],1);
mmm= max(M(:)) - min(M(:));
end
5 commentaires
Walter Roberson
le 12 Mai 2020
M' is conjugate transpose. Unless you are doing specialized linear algebra, it is recommended that you use .' instead of ' as .' is regular (non-conjugate) transpose.
Walter Roberson
le 12 Mai 2020
AYUSH MISHRA
le 26 Mai 2020
function [mmr,mmm]=minimax(M)
mmr=max(M')-min(M');
mmm=max(max(M'))-min(min(M'));
end
% here M' is use because when we are using M than mmr generate column matrix
SOLUTION
[mmr, mmm] = minimax([1:4;5:8;9:12])
mmr =
3 3 3
mmm =
11
1 commentaire
saurav Tiwari
le 11 Juin 2020
whatttt, it's so easy code omg and i make it very difficult. Same on me
Anurag Verma
le 26 Mai 2020
function [mmr,mmm]=minimax(M)
a = max(M(1,:))-min(M(1,:));
b = max(M(2,:))- min(M(2,:));
c = max(M(3,:))- min(M(3,:));
mmr = [a,b,c];
mmm = max(M(:))-min(M(:));
what's wrong with this code. can anyone explain please it gives an error with the random matrix question?
2 commentaires
Rik
le 26 Mai 2020
Your code will only consider the first 3 rows. It will error for arrays that don't have 3 rows, and will return an incorrect result for arrays that have more than 3 rows.
You should read the documentation for max and min, and look through the other solutions on this thread for other possible strategies to solve this assignment.
saurav Tiwari
le 11 Juin 2020
yaa, RIK is right. your code can only work for 3 rows matrix but random matrix contain a matrix of rows>1 . ok so, you should have to make a code that can work for any type of matrix
Md Naim
le 30 Mai 2020
function [mmr, mmm]= minimax(M)
mmr = max(M')-min(M')
mmm = max(max(M'))-min(min(M'))
end
0 commentaires
ROHAN SUTRADHAR
le 6 Juin 2020
function [mmr,mmm] = minimax(A)
X = A';
mmr = max(X([1:end],[1:end]))- min(X([1:end],[1:end]));
mmm = max(X(:))-min(X(:));
end
0 commentaires
saurav Tiwari
le 11 Juin 2020
function [a,b]=minimax(M)
[m,n]=size(M);
x=1:m;
a=max(M(x,:)')-min(M(x,:)');
v=M(:);
b=max(v)-min(v);
end
1 commentaire
A.H.M.Shahidul Islam
le 21 Juil 2020
Modifié(e) : A.H.M.Shahidul Islam
le 21 Juil 2020
function [mmr,mmm]=minimax(M)
m=M';
mmr=abs(max(m)-min(m));
mmm=max(M(:))-min(M(:));
%works like a charm
1 commentaire
Stephen23
le 21 Juil 2020
"works like a charm"
Does not work:
>> M = [1;2;4]
M =
1
2
4
>> minimax(M)
ans =
3
Akinola Tomiwa
le 23 Juil 2020
Function [mmr, mmm] = minmax(x)
mmr = (max(x, [], 2) - min(x, [], 2)';
%the prime converts it to a row matrix
mmm = (max(x(:)) - min(x(:));
end
4 commentaires
Walter Roberson
le 23 Juil 2020
mmm = (max(x(:)) - min(x(:)) ;
1 2 3 21 2 3 21
The number indicates the bracket nesting level in effect "after" the corresponding character. You can see that you have one open bracket in effect at the end of the line.
youssef boudhaouia
le 24 Juil 2020
function [mmr,mmm]=minimax(M)
a=M';
ma=max(a);
mi=min(a);
mmr = ma - mi ;
mmm=max(max(M)) - min(min(M));
end
Here's my answer, as simple as possible and it works.
youssef boudhaouia
le 24 Juil 2020
function [mmr,mmm]=minimax(M)
a=M';
ma=max(a);
mi=min(a);
mmr = ma - mi ;
mmm=max(max(M)) - min(min(M));
end
here's my answer as simple as possible , it works!
0 commentaires
Cette question est clôturée.
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!