Convert Differential Equations to Spate Space

6 vues (au cours des 30 derniers jours)
pozmogov
pozmogov le 9 Juil 2019
Commenté : Star Strider le 10 Juil 2019
I have a system of differential equations, which I would like to convert to spate-space representation:
s = [x(2);
(x(4)*x(6)*(p.Iyy-p.Izz)-(u(1)+u(2)+u(3)+u(4))*p.IR*x(4)...
+(p.b*p.l*(u(2)^2-u(4)^2)))/p.Ixx;
x(4);
(x(2)*x(6)*(p.Izz-p.Ixx)+(u(1)+u(2)+u(3)+u(4))*p.IR*x(2)...
+(p.b*p.l*(u(3)^2-u(1)^2)))/p.Iyy;
x(6);
(x(4)*x(2)*(p.Ixx-p.Iyy)+(p.d*(u(1)^2+u(3)^2-u(2)^2-u(4)^2)))/p.Izz;
x(8);
((p.b*(u(1)^2+u(2)^2+u(3)^2+u(4)^2))*(sin(x(1))*sin(x(5))...
+cos(x(1))*sin(x(3))*cos(x(5))))/p.mass;
x(10);
((p.b*(u(1)^2+u(2)^2+u(3)^2+u(4)^2))*(cos(x(1))*sin(x(3))*sin(x(5))...
-sin(x(1))*cos(x(5))))/p.mass;
x(12);
((p.b*(u(1)^2+u(2)^2+u(3)^2+u(4)^2))*(cos(x(1))*cos(x(3)))-p.mass*p.g)/p.mass];
The confusing moment for me is that there are multiplication of state variables (e.g. x(4)*x(6)), so I don't know how to write it down in A matrix.
Is it possible to convert such system to state-space? Could you hint the way how it should look like?
Thank you in advance for your answer!

Réponse acceptée

Star Strider
Star Strider le 9 Juil 2019
In order to convert your equations to a state-space representation, you need to linearise them. This involves taking the Jacobian. I refer you to Linearization of Nonnlinear Systems to guide your efforts. The Symbolic Math Toolbox (that was not available when I encountered this) can likely help you significantly.
There are several other such references that reveal themselves in an Interweb search.
  2 commentaires
pozmogov
pozmogov le 10 Juil 2019
Thank you very much for your answer! Really helpful.
Star Strider
Star Strider le 10 Juil 2019
As always, my pleasure!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Matrix Computations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by