Convert Differential Equations to Spate Space
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
pozmogov
le 9 Juil 2019
Commenté : Star Strider
le 10 Juil 2019
I have a system of differential equations, which I would like to convert to spate-space representation:
s = [x(2);
(x(4)*x(6)*(p.Iyy-p.Izz)-(u(1)+u(2)+u(3)+u(4))*p.IR*x(4)...
+(p.b*p.l*(u(2)^2-u(4)^2)))/p.Ixx;
x(4);
(x(2)*x(6)*(p.Izz-p.Ixx)+(u(1)+u(2)+u(3)+u(4))*p.IR*x(2)...
+(p.b*p.l*(u(3)^2-u(1)^2)))/p.Iyy;
x(6);
(x(4)*x(2)*(p.Ixx-p.Iyy)+(p.d*(u(1)^2+u(3)^2-u(2)^2-u(4)^2)))/p.Izz;
x(8);
((p.b*(u(1)^2+u(2)^2+u(3)^2+u(4)^2))*(sin(x(1))*sin(x(5))...
+cos(x(1))*sin(x(3))*cos(x(5))))/p.mass;
x(10);
((p.b*(u(1)^2+u(2)^2+u(3)^2+u(4)^2))*(cos(x(1))*sin(x(3))*sin(x(5))...
-sin(x(1))*cos(x(5))))/p.mass;
x(12);
((p.b*(u(1)^2+u(2)^2+u(3)^2+u(4)^2))*(cos(x(1))*cos(x(3)))-p.mass*p.g)/p.mass];
The confusing moment for me is that there are multiplication of state variables (e.g. x(4)*x(6)), so I don't know how to write it down in A matrix.
Is it possible to convert such system to state-space? Could you hint the way how it should look like?
Thank you in advance for your answer!
0 commentaires
Réponse acceptée
Star Strider
le 9 Juil 2019
In order to convert your equations to a state-space representation, you need to linearise them. This involves taking the Jacobian. I refer you to Linearization of Nonnlinear Systems to guide your efforts. The Symbolic Math Toolbox (that was not available when I encountered this) can likely help you significantly.
There are several other such references that reveal themselves in an Interweb search.
2 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Matrix Computations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!