How to generate random projection matrices?
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
As it is said in the question, I am looking for a Matlab function that generates random projection matrices, so that I can use it for linear programming.
0 commentaires
Réponses (3)
KALYAN ACHARJYA
le 24 Juil 2019
Modifié(e) : KALYAN ACHARJYA
le 24 Juil 2019
function P=projection_mat(n)
A=colbasis(magic(n));
P=A*inv(A'*A)*A';
end
The colbasis function is here
Here n represent size of square matrix. Please note that I have answered this question from here
Command Window:
>> y=projection_mat(6)
y =
0.7500 -0.0000 0.2500 0.2500 -0.0000 -0.2500
-0.0000 1.0000 0.0000 -0.0000 -0.0000 0.0000
0.2500 0.0000 0.7500 -0.2500 -0.0000 0.2500
0.2500 -0.0000 -0.2500 0.7500 -0.0000 0.2500
-0.0000 -0.0000 -0.0000 -0.0000 1.0000 -0.0000
-0.2500 0.0000 0.2500 0.2500 -0.0000 0.7500
You can generate any size matries, just pass the same size matrix to colbasis function.
Hope it helps!
4 commentaires
KALYAN ACHARJYA
le 25 Juil 2019
Modifié(e) : KALYAN ACHARJYA
le 25 Juil 2019
Is there any necessity having fixed size matrices?
>> y=projection_mat(6)
y =
0.7500 -0.0000 0.2500 0.2500 -0.0000 -0.2500
-0.0000 1.0000 0.0000 -0.0000 -0.0000 0.0000
0.2500 0.0000 0.7500 -0.2500 -0.0000 0.2500
0.2500 -0.0000 -0.2500 0.7500 -0.0000 0.2500
-0.0000 -0.0000 -0.0000 -0.0000 1.0000 -0.0000
-0.2500 0.0000 0.2500 0.2500 -0.0000 0.7500
>> y=projection_mat(5)
y =
1.0000 -0.0000 -0.0000 -0.0000 -0.0000
-0.0000 1.0000 -0.0000 -0.0000 -0.0000
-0.0000 -0.0000 1.0000 -0.0000 0.0000
-0.0000 -0.0000 -0.0000 1.0000 0.0000
-0.0000 -0.0000 -0.0000 -0.0000 1.0000
>>
Bruno Luong
le 25 Juil 2019
Modifié(e) : Bruno Luong
le 25 Juil 2019
n = 5
r = 3; % rank, dimension of the projection subspace
[Q,~] = qr(randn(n));
Q = Q(:,1:r);
P = Q*Q' % random projection matrix P^2 = P, rank P = r
5 commentaires
Bruno Luong
le 25 Juil 2019
Modifié(e) : Bruno Luong
le 25 Juil 2019
Sorry I think the only projection matrix that is orthogonal is diagonal matrix with 1 or 0 on the diagonal. So there is no really randomness for what you ask.
Bruno Luong
le 26 Juil 2019
Modifié(e) : Bruno Luong
le 26 Juil 2019
I wonder if you mistaken "orthogonal projection matrix" and "projection matrix that is orthogonal". They are not the same.
Mine is "orthogonal projection matrix", which is projection matrix (P^2==P) that has additional properties
- symmetric
- all eigen values are 0 or 1.
Image Analyst
le 25 Juil 2019
Not sure what you mean by projection, but the radon transform does projections. That's its claim to fame. It basically projects a matrix along any angle and gives you the sum of the interpolated values along the projection angle. This is the crucial function for reconstructing 3-D volumetric CT images from 2-D projections.
The radon() function requires the Image Processing Toolbox.
0 commentaires
Voir également
Catégories
En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!