Regression on multi-variable data
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Natalia Millan Espitia;Millan Espitia
le 15 Août 2019
Réponse apportée : Star Strider
le 15 Août 2019
Hello I have a set of data that looks like this:

I want a model of the form
M(x, y, x) = p*(x^0.5) + q(y^0.5) + s(z^0.5)
-> all the exponents are equal to 0.5
where p, q and s are the coefficients that I am looking for.
Each x, y, z, M is a experimental data point, therefore there exist some error in the data, and I want the model with the best fit from which I can calculate the overal error.
How can I obtain this ?
I greatly appreciate your suggestions
0 commentaires
Réponses (1)
Star Strider
le 15 Août 2019
This is a linear problem, so a linear solution will work.
Try this:
M = [1.48 1 0.9 0.69 0];
x = [8.526 5.6 6.9654 7 0];
y = [0.105 2.8 1.7838 0 0];
z = [0.348 0.21 0 .02 0.25];
B = sqrt([x(:) y(:) z(:) ones(5,1)]) \ M(:);
p = B(1)
q = B(2)
s = B(3)
intcpt = B(4)
Mfit = sqrt([x(:) y(:) z(:) ones(5,1)]) * B;
Resid = M(:) - Mfit
producing:
p =
0.443190863040845
q =
0.075119847669093
s =
0.931994338072853
intcpt =
-0.488034944641904
Resid =
0.099808696536123
-0.113539064951291
0.118034358405705
-0.126341765596015
0.022037775605478
There are too many dimensions to plot, however the residuals indicate the the fit is reasonably good.
0 commentaires
Voir également
Catégories
En savoir plus sur Linear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!