How to curve fit following summation equation in MATLAB with given experimental data.
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
and
a,k,c,b, and g are constants to be determined.
4 commentaires
KALYAN ACHARJYA
le 13 Nov 2019
For assignments or homework, we help only after looking at your efforts to solve the question.
Réponse acceptée
Alex Sha
le 13 Nov 2019
d(K/ (1+exp(c-b*t)))/dt=k*exp(c-b*t)*b/sqr(1+exp(c-b*t)),so your fitting function become:

is the above correct? if yes, you may see the function is over-fit, that means the parameters will not be unique, one solution likes below:
Root of Mean Square Error (RMSE): 11257.9862380487
Sum of Squared Residual: 1647649303.76923
Correlation Coef. (R): 0.891727403408187
R-Square: 0.795177761989108
Adjusted R-Square: 0.726903682652144
Determination Coef. (DC): 0.795103266693536
F-Statistic: 7.64708134900884
Parameter Best Estimate
-------------------- -------------
a 67082.9685482823
k 2.55264230357405E16
c 39.1820152654189
b 0.0511178327965598
g 1.74671169710137E-249

2 commentaires
KALYAN ACHARJYA
le 13 Nov 2019
@Alex
Why you are providing the two answers?
You can add the modified answer as a comments in the first answer.
Plus de réponses (2)
Alex Sha
le 12 Nov 2019
Hi, Yadav, in your function "a*d/dt(k/1+exp(c-b*t))", what is "d/dt"? does "k/1" equal to "k"? Please describe clearly.
4 commentaires
Alex Sha
le 14 Nov 2019
Hi, Yadav, I actually use a software package other than Matlab, named 1stOpt, it is much easy for using without guessing initial start-values, since it adopts global optimization algorithm. The code looks like below:
Parameter a,k,c,b,g;
ConstStr f=a*(k*exp(c-b*t(i))*b)/(1+exp(c-b*t(i)))^2;
Variable t,z[OutPut],y;
StartProgram [Basic];
Sub MainModel
Dim as integer i, j, n
Dim as double temd1, temd2
for i = 0 to DataLength - 1
n = t(i)
temd1 = 0
for j = 0 to n
temd1 = temd1 + f
next
temd2 = 0
for j = 0 to n
temd2 = temd2 + g*y(j)
next
z(i) = temd1 + temd2
Next
End Sub
EndProgram;
Data;
t=[0,2,4,6,8,10,12,14,16,18,20,22,24];
z=[0,0,666.6,5333.33,10666.6,21333,42666.6,4666.6,42666.6,42666.6,42666.6,42666.6,85333.3];
y=[1.25*10^8,1.*10^8,1.25*10^8,2.2*10^10,1.3*10^11,1.4*10^11,1.25*10^11,4.7*10^10,7.9*10^10,9.5*10^10,9.4*10^10,8.8*10^10,9.4*10^10];
a much better result:
Root of Mean Square Error (RMSE): 9901.69220512954
Sum of Squared Residual: 1274565610.8266
Correlation Coef. (R): 0.918681151445272
R-Square: 0.84397505802081
Adjusted R-Square: 0.791966744027747
Determination Coef. (DC): 0.841498837497943
F-Statistic: 9.7840155772957
Parameter Best Estimate
-------------------- -------------
a -277156.527610417
k -10698197.9029827
c 28.5533367811484
b 0.35649699061682
g 3.06293808255498E-8

3 commentaires
Alex Sha
le 14 Nov 2019
Sorry for giving multi-answers.
1stOpt is an independent software package I think, not the add-in or toolbox of Matlab.
Voir également
Catégories
En savoir plus sur Performance and Memory dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!