
fourth order differential equation
14 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
kingcruises
le 31 Déc 2019
Commenté : Star Strider
le 2 Jan 2020
syms f(x)
Df = diff(f,x);
D2f = diff(f,x,2);
D3f = diff(f,x,3);
D4f = diff(f,x,4);
ode =3*D4f+(2*x^2+6)*D3f+5*D2f-Df-2*f == - 4*x^6+ 2*x^5 -55*x^4 - 24*x^3 - 22*x^2 - x*32;
cond1 = f(0)==0;
cond2 = Df(0)==1;
cond3 = D2f(0) == -8;
cond4 = D3f(0) == 6;
conds = [cond1 cond2 cond3 cond4];
fSol(x) = dsolve(ode,conds);
figure
ezplot(fSol(x),[0 1])
The error is :
Warning: Unable to find explicit solution.
> In dsolve (line 201)
(line 13)
Error using inlineeval (line 14)
Error in inline expression ==> matrix([])
Undefined function 'matrix' for input arguments of type 'double'.
Error in inline/feval (line 33)
INLINE_OUT_ = inlineeval(INLINE_INPUTS_, INLINE_OBJ_.inputExpr, INLINE_OBJ_.expr);
Error in ezplotfeval (line 51)
z = feval(f,x(1));
Error in ezplot>ezplot1 (line 486)
[y, f, loopflag] = ezplotfeval(f, x);
Error in ezplot (line 158)
[hp, cax] = ezplot1(cax, f{1}, vars, labels, args{:});
Error in sym/ezplot (line 78)
h = ezplot(fhandle(f),varargin{:});%#ok<EZPLT>
Error in try2 (line 15)
ezplot(fSol(x),[0 1])
0 commentaires
Réponse acceptée
Star Strider
le 31 Déc 2019
If an analytical solution is not an option, and a plot of the solution is the objectrive:
syms f(x) X Y
Df = diff(f,x);
D2f = diff(f,x,2);
D3f = diff(f,x,3);
D4f = diff(f,x,4);
ode =3*D4f+(2*x^2+6)*D3f+5*D2f-Df-2*f == - 4*x^6+ 2*x^5 -55*x^4 - 24*x^3 - 22*x^2 - x*32;
% cond1 = f(0)==0;
% cond2 = Df(0)==1;
% cond3 = D2f(0) == -8;
% cond4 = D3f(0) == 6;
[VF,Sbs] = odeToVectorField(ode);
odefcn = matlabFunction(VF, 'Vars',{x,Y});
[X,Y] = ode45(odefcn, [0 1], [0 1 -8 6]);
figure
plot(X, Y)
grid
legend(string(Sbs))
producing:

15 commentaires
Star Strider
le 2 Jan 2020
The ‘method of moments’ was not part of my undergraduate or graduate education. (I had to look it up.) I will leave that part to you.
Plotting the total of the derivatives is straightforward. Only one change to my posted code is needed and that to sum across the columns in the plot call:
[X,Y] = ode45(odefcn, [0 1], [0 1 -8 6]);
figure
plot(X, sum(Y,2))
grid
That should do what you want.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

