ODE45: IF/loop function
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Komal Rajana
le 9 Jan 2020
Réponse apportée : Jyothis Gireesh
le 12 Fév 2020
Hello,
I would like to know if its correct to write my differential equations as follow in the 'if' command in the function file. If not, please advice. I am trying to model a simple damper.
Thanks.
function [dy] = SDOF2(t, u);
dy = zeros(2,1);
m=1000; %Mass (lb.sec^2/in.)
k =100000; %Stiffness (lb/in.)
omega = sqrt(k/m); %Natural Frequency
c=2000;%Damping coefficient (lb.sec/in.)
g =386;%Acceleration of gravity (in./sec^2)
c_cr=2*m*omega; %Critical damping coefficient
xi = c/c_cr;%Damping ratio
%%Define the forcing function
% if t<=0.5
% F = sin(4*pi*t);
% else
% F =0;
F = 0;
% b=1*m*(((-omega*omega*u(1)-2*xi*omega*u(2)+F))/u(2)>0);
% end %%%%-ESTIMATION-%%%%
if ((((-omega*omega*u(1))-(2*xi*omega*u(2))+F/m)/u(2))>0)
dy(1) = u(2);
dy(2)= -omega*omega*u(1)-2*xi*omega*u(2)+F/m-0.5*m*((-omega*omega*u(1))-(2*xi*omega*u(2))+F/m);
else
dy(1) = u(2);
dy(2)= -omega*omega*u(1)-2*xi*omega*u(2)+F/m;
end
% dy(2)= -omega*omega*u(1)-2*xi*omega*u(2)+F/m;
end
7 commentaires
Meg Noah
le 10 Jan 2020
There's a solution here on the web:
Also, I've implemented a Runge-Kutta to solve baseball motion under atmosphere drag and lift:
It's a 3-D version.
Réponse acceptée
Jyothis Gireesh
le 12 Fév 2020
It is my understanding that the differential equation is a function of “u(1)” and “u(2)”. So it is safe to assume that “u(1)” and “u(2)” are symbolic variables (or can be defined as symbolic). In this case, it may be better to use the “piecewise” function which allows conditionally defined expressions or functions.
Please refer to the following documentation link to get information on “piecewise” function
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!