Obtain a transfer function form a 2nd order D.E. using the Lapalce Transforms
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Joshua Scicluna
le 13 Jan 2020
Commenté : Star Strider
le 15 Jan 2020
Hello,
(Using MATLAB) Is it possible to obtain a transfer function H(s) from a 2nd order D.E. using the Laplace Transfroms?
The D.E. is; d^2y(t)/dt^2 + 7.6*dy(t)/dt + 4.2*y(t) = x(t)
Thanks!
0 commentaires
Réponse acceptée
Star Strider
le 13 Jan 2020
It is, however it takes some effort and a bit of manual intervention in the end:
% d^2y(t)/dt^2 + 7.6*dy(t)/dt + 4.2*y(t) = x(t)
syms s t x(t) y(t) X(s) Y(s)
assume(X(s) ~= 0)
DE = diff(y,2) + 7.6*diff(y,1) + 4.2*y == x;
LDE = laplace(DE,t,s);
LDE = subs(LDE, {laplace(y, t, s), subs(diff(y(t), t), t, 0), laplace(x(t), t, s), y(0)},{Y(s), 0, X(s), 0})
LDETF = simplify( LDE, 'Steps',250)
LDETF = subs(LDETF,{X,Y},{1,1})
LDETF = ((5*s + 3)*(s + 7))/5
s = tf('s');
H = ((5*s + 3)*(s + 7))/5 % Copy ‘LDETF’ Result From Command Window & Paste Here
bode(H)
4 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!