Dealing with symbolic parameter in a DAE
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Christopher Lamb
le 15 Jan 2020
Commenté : Christopher Lamb
le 29 Jan 2020
Hello!
I've been using the Mass Matrix Solvers page to create a ODE solver for a mass matrix that I'm using for a piston.
However, I've come across a hickup where I get an error due to a symbolic parameter being in the DAE eqn.
Here since a screenshot of the matrix:
On the left matrix you can see in the third row, the specific heat is the parameter that I mentioned.
Here is the error I'm getting:
Error using mupadengine/feval (line 187)
Found symbolic object 'Cv' in DAEs. Only variables and declared parameters can be symbolic
What I'm asking is how am I able to create a work around for this.
2 commentaires
Réponse acceptée
Guru Mohanty
le 23 Jan 2020
Hi, I understand you are trying to solve DAEs Using Mass Matrix Solvers. The error is due to missing input argument of the odeFunction. However, I can get solutions to these DAEs considering zero initial condition. Here is the code for it.
clc;
clear all;
syms p(theta) m(theta) T(theta) W(theta) Q(theta) V(theta) Cv mdotin...
mdotex mdotleak Cp Tair Qdotrxn Qdotloss B L a
eqn1 = diff(p(theta), 1)/p(theta)-diff(m(theta), 1)/m(theta)...
-diff(T(theta),1)/T(theta)+diff(V(theta), 1)/V(theta) == 0;
eqn2 = diff(m(theta), 1) == (mdotin - mdotex - mdotleak);
eqn3 = Cv*T(theta)*diff(m(theta), 1)+Cv*m(theta)*diff(T(theta), 1)...
-diff(Q(theta), 1)+diff(W(theta), 1) == 0;
eqn4 = diff(W(theta), 1)-p(theta)*diff(V(theta), 1) == 0;
eqn5 = diff(Q(theta), 1) == (mdotin*Cp*Tair-mdotex*Cp*T(theta)...
-mdotleak*Cp*T(theta)+Qdotrxn-Qdotloss);
eqn6 = diff(V(theta), 1) == ((B^2*pi*(a*sin(theta) +...
(a^2*cos(theta)*sin(theta))/(- a^2*sin(theta)^2 + L^2)^(1/2)))/4);
eqns = [eqn1 eqn2 eqn3 eqn4 eqn5 eqn6];
vars = [p(theta); m(theta); T(theta); W(theta); Q(theta); V(theta)];
origVars = length(vars);
[DAEs,DAEvars] = reduceDAEIndex(eqns,vars);
[M,f] = massMatrixForm(DAEs,DAEvars);
pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff(pDAEs,pDAEvars);
M = odeFunction(M, DAEvars,Cv);
f = odeFunction(f, DAEvars,Cv,mdotin,mdotex,mdotleak,Cp,Tair,...
Qdotrxn,Qdotloss, B, L, a);
Cv = 0.718;
mdotin = 0;
mdotex = 0;
mdotleak = 0;
Cp = 1.005;
Tair = 273+21;
Qdotrxn = 0;
Qdotloss = 0;
B = 86;
L = 50;
a = 150;
F = @(theta, Y) f(theta, Y, Cv, mdotin, mdotex, mdotleak, Cp, Tair, Qdotrxn,...
Qdotloss, B, L, a);
% Zero Initial Condition
y0=zeros(6,1);
% Solve System of ODE
[tSol,ySol] = ode15s(F, [0, 0.5], y0,0);
plot(tSol,ySol(:,1:origVars),'-o')
for k = 1:origVars
S{k} = char(DAEvars(k));
end
grid on
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!