C.T. signals convolution in Matlab
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Joshua Scicluna
le 15 Jan 2020
Commenté : Star Strider
le 16 Jan 2020
Hi, I have 2 continues time signals (exp decay & step), is it possible to convolute them in MATLAB?
I am working with symbolic variables ‘s’ and ‘t’ since I have obtained a transfer function H(s) analyticlay then converted it to h(t) using ilapalce() function, hence now I need to obtain y(t) where y(t) = h(t)*x(t). x(t) = u(t) a step input and h(t) = exp(-2 t) 4 - 4 exp(-t)
Thanks!
JS
0 commentaires
Réponse acceptée
Star Strider
le 15 Jan 2020
One approach:
syms h(t) x(t) s t
Fcn1 = h(t) == exp(-2*t)*4 - 4*exp(-t);
Fcn2 = x(t) == heaviside(t);
convlap = laplace(Fcn1, t, s) * laplace(Fcn2, t, s);
Y(s) = simplify(rhs(convlap), 'Steps',250)
y(t) = ilaplace(Y, s, t)
Producing:
y(t) =
4*exp(-t) - 2*exp(-2*t) - 2
2 commentaires
Star Strider
le 15 Jan 2020
Yes.
I did the convolution in the complex s-domain because (1) that is the only way it is possible to do it, and (2) I got the impression that was the process you described as desiring.
This:
syms h(t) x(t) s t T tau
h(t) = exp(-2*t)*4 - 4*exp(-t);
x(t) == heaviside(t);
y(t) = simplify(int(h(t)*x(t-tau), tau, -T, T), 'Steps',250)
produces:
y(t) =
-4*exp(-2*t)*(exp(t) - 1)*int(x(t - tau), tau, -T, T)
that appears to be the best result available. There is no specific convolution function in the Symbolic Math Toolbox. (I used symmetric integration limits because similar terms cancel each other, considerably simplifying the expression.)
Using asymmetric limits:
y(t) = simplify(int(h(t)*x(t-tau), tau, 0, T), 'Steps',250)
produces:
y(t) =
-4*exp(-2*t)*int(x(t - tau), tau, 0, T)*(exp(t) - 1)
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!