Least squares regression of a quadratic without bx term.
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Wojciech Kalinowski
le 23 Jan 2020
Réponse apportée : Star Strider
le 23 Jan 2020
Hi,
I'm trying to find the least squars regression formula and R squared value.
However, the data has to fit y=ax^2+c without the bx term, so polyfit will not work.
The two sets of data y and x are a 1x119 double vector.
Thanks in advanced.
0 commentaires
Réponse acceptée
Star Strider
le 23 Jan 2020
Try this:
DM = [x(:).^2 ones(size(x(:)))]; % Design Matrix
B = DM \ y(:); % Parameters
yfit = DM * B; % Calculated Fit
SStot = sum((y-mean(y)).^2); % Total Sum-Of-Squares
SSres = sum((y(:)-yfit(:)).^2); % Residual Sum-Of-Squares
Rsq = 1-SSres/SStot; % R^2
To plot it:
figure
plot(x, y, 'p')
hold on
plot(x, yfit, '-r')
hold off
grid
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!