Least squares regression of a quadratic without bx term.

12 vues (au cours des 30 derniers jours)
Wojciech Kalinowski
Wojciech Kalinowski le 23 Jan 2020
Hi,
I'm trying to find the least squars regression formula and R squared value.
However, the data has to fit y=ax^2+c without the bx term, so polyfit will not work.
The two sets of data y and x are a 1x119 double vector.
Thanks in advanced.

Réponse acceptée

Star Strider
Star Strider le 23 Jan 2020
Try this:
DM = [x(:).^2 ones(size(x(:)))]; % Design Matrix
B = DM \ y(:); % Parameters
yfit = DM * B; % Calculated Fit
SStot = sum((y-mean(y)).^2); % Total Sum-Of-Squares
SSres = sum((y(:)-yfit(:)).^2); % Residual Sum-Of-Squares
Rsq = 1-SSres/SStot; % R^2
To plot it:
figure
plot(x, y, 'p')
hold on
plot(x, yfit, '-r')
hold off
grid

Plus de réponses (0)

Catégories

En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange

Produits


Version

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by