Effacer les filtres
Effacer les filtres

Finding the closed form solution to a system of second order differential equations

1 vue (au cours des 30 derniers jours)
I am trying to find the closed form solution to a system of differential equations but I am unsure how to access the closed form solutions. How can I modify the code to find the closed form solutions of y and z? Any help would be appreciated.
syms y(t) z(t)
Dy = diff(y,t); %angle
D2y = diff(y,t,2);
Dz = diff(z,t); D2z = diff(z,t,2);
eqns = [-4.905*sin(y)-24.525*sin(y) == 0.046875*D2y + (0.125*sin(y)*(Dy*Dy*cos(y)+D2y*sin(y))) + sin(y)*(D2y*0.625*sin(y))-D2y*cos(y), D2z == Dy*Dy*0.25*sin(y)-D2y*0.25*cos(y)];
fun = matlabFunction(odeToVectorField(eqns),'Vars',{'t','Y','Z'});
tspan = [0 10]; % Time interval for integration
y0 = [pi/3 0 0 0]; % initial conditions
%[t,y] = ode45(fun,tspan,y0);
sol = ode45(fun,[0 20],y0)
fplot(@(x)deval(sol,x,1), [0, 20])

Réponse acceptée

Star Strider
Star Strider le 19 Mar 2020
A closed-form solution is likely not possible because both differential equations are nonlinear, specifically:
(0.125*sin(y)*(Dy*Dy*cos(y)+D2y*sin(y))
and:
Dy*Dy*0.25*sin(y)-D2y*0.25*cos(y)
Most nonlinear differential equations do not have analytic solutions. These are two of them.

Plus de réponses (0)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by