Resolve normal depth from Manning's equation

9 vues (au cours des 30 derniers jours)
Álvaro Pardo
Álvaro Pardo le 1 Août 2020
Commenté : Álvaro Pardo le 1 Août 2020
Hello,
I aim to obtain the normal depth of a channel using Mannig's equation. Somehow I don't manage to resolve its value. Here it's the pieco of code that I'm using:
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
syms y
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning_eqn=@(y)(1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area==q;
soly=solve(manning_eqn,y)
I would really appreciate if someone can help to fix it in order to obtain the desired values and avoid the coding of an iteration loop for the manual calculation. Thanks in advance!!
Álvaro

Réponse acceptée

Alan Stevens
Alan Stevens le 1 Août 2020
Modifié(e) : Alan Stevens le 1 Août 2020
This shoud do it:
depth0 = 1; % Initial guess
depth = fzero(@manningfn, depth0);
function manning = manningfn(y)
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning = (1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area-q;
end
  3 commentaires
Alan Stevens
Alan Stevens le 1 Août 2020
Yes, you could do this:
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
data =[riverSlope; bottom_width; slope_Rbank; slope_Lbank; q; n];
depth0 = 1; % Initial guess
depth = fzero(@manningfn, depth0,[],data);
function manning = manningfn(y, data)
riverSlope=data(1);
bottom_width=data(2);
slope_Rbank=data(3);
slope_Lbank=data(4);
q=data(5);
n=data(6);
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning = (1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area-q;
end
Álvaro Pardo
Álvaro Pardo le 1 Août 2020
Many thanks Alan!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by