Morse Potential solve using Matlab

18 vues (au cours des 30 derniers jours)
Naman Singh
Naman Singh le 29 Sep 2020
Commenté : Kevin Lehmann le 26 Jan 2024
In molecular dynamics simulations using classical mechanics modeling, one is often faced with a large nonlinear ODE system of the form
Mq ′′ = f(q), where f(q) = −∇U(q). (4.32) Here q are generalized positions of atoms, M is a constant, diagonal, positive mass matrix and U(q) is a scalar potential function. Also, ∇U(q) = ( ∂U ∂q1 , . . . , ∂U ∂qm ) T . A small (and somewhat nasty) instance of this is given by the Morse potential [83] where q = q(t) is scalar,
U(q) = D(1−e −S(q−q0) ) 2 , and we use the constants D = 90.5∗.4814e−3, S = 1.814, q0 = 1.41 and M = 0.9953.
How to solve this problems using non-library functions
  1 commentaire
Kevin Lehmann
Kevin Lehmann le 26 Jan 2024
It turns out that there is a closed form analytical expression for the vibrational motion of a Morse Oscillator, so no numerical integration is requires. If the potential is written as U(q) = D z^2 with z = 1 - exp( -b (r-re) ), and the oscillator has reduced mass mu, the angular frequency, w(E), of the oscillator as function of vibrational energy, E, is given
by w(E)^2 = 2 b^2 ( D - E) / mu. Note that it goes to zero as E -> D, the dissociation energy.
z(t, E, phi) = ( E cos(w(E) t +\phi)^2 + ( D-E) sqrt(E/D) sin( w(E) t + \phi) ) / ( D - E sin( w(E) t + \phi)^2 )
r(t,E,phi) = re - ln( 1 - z(t,E,\phi) ) / b
\phi is a phase of the oscillator.

Connectez-vous pour commenter.

Réponse acceptée

Alan Stevens
Alan Stevens le 29 Sep 2020
Do you mean like the following (where I've just used 1 atom):
If so, then something like the following coding might do:
%% Solver
tspan = [0 100];
IC = [1.41 0.04];
[t, Q] = ode15s(@dqdtfn,tspan,IC);
q = Q(:,1);
plot(t,q),grid
function dqdt = dqdtfn(~,Q)
D = 90.5*0.4814E-3;
S = 1.814;
q0 = 1.41;
M = 0.9953;
q = Q(1);
v = Q(2);
dvdt = -2*D*S*exp(-S*(q-q0))*(1-exp(-S*(q-q0)))/M;
dqdt = [v; dvdt];
end
This results in the rather boring
  3 commentaires
Alan Stevens
Alan Stevens le 30 Sep 2020
Perhaps the following will help:
D = 90.5*0.4814E-3;
S = 1.814;
q0 = 1.41;
M = 0.9953;
tspan = [0 100];
IC = [1.41 0.04];
[t, Q] = ode15s(@dqdtfn,tspan,IC);
q = Q(:,1);
v = Q(:,2);
% Classically E would be (1/2)Mv^2 + U
% If that applies here, then:
E = 1/2*M*v.^2 + D*(1- exp(-S*(q-q0)).^2)-(1/2);
subplot(2,1,1)
plot(t,q),grid
xlabel('t'),ylabel('q')
subplot(2,1,2)
plot(t,E),grid
xlabel('t'),ylabel('E')
function dqdt = dqdtfn(~,Q)
D = 90.5*0.4814E-3;
S = 1.814;
q0 = 1.41;
M = 0.9953;
q = Q(1);
v = Q(2);
dvdt = -2*D*S*exp(-S*(q-q0))*(1-exp(-S*(q-q0)))/M;
dqdt = [v; dvdt];
end
Alan Stevens
Alan Stevens le 30 Sep 2020
Modifié(e) : Alan Stevens le 30 Sep 2020
For one atom that is essentially what my coding plots since (1/2)Mv^2 = p^2/(2M) (for 1 atom the transpose of p is the same as p).
What is N? The number of atoms?

Connectez-vous pour commenter.

Plus de réponses (1)

Naman Mathur
Naman Mathur le 30 Sep 2020
Use a library nonstiff Runge-Kutta code based on a 4-5 embedded pair to integrate this problem for the Morse potential on the interval 0 ≤ t ≤ 2000, starting from q(0) = 1.4155, p(0) = 1.545 /48.888M. Using a tolerance of 1.e − 4 the code should require a little more than 1000 times steps. Plot the obtained values for H(q(t), p(t)) − H(q(0), p(0))
This is what the problem says, i think it's the number range of time 1000 and 2000
  6 commentaires
Naman Singh
Naman Singh le 3 Oct 2020
Just curious, I'm not sure how to implement Euler methods with the 3 variables p,q,t
Alan Stevens
Alan Stevens le 3 Oct 2020
Euler methods as follows. Easy to implement; not always very accurate (especially simple Euler):
D = 90.5*0.4814E-3;
S = 1.814;
q0 = 1.4155;
M = 0.9953;
v0 = 1.545 /48.888;
% Euler
dt = 0.1;
t = 0:dt:200;
n = numel(t);
q = zeros(n,1);
v = zeros(n,1);
q(1) = q0; v(1) = v0;
for i = 1:n-1
q(i+1) = q(i) + dt*v(i);
% Next line is simple Euler (RHS uses q(i))
%v(i+1) = v(i) + dt*(-2*D*S*exp(-S*(q(i)-q0))*(1-exp(-S*(q(i)-q0)))/M);
% Next line is symplectic Euler (RHS uses q(i+1) not q(i))
v(i+1) = v(i) + dt*(-2*D*S*exp(-S*(q(i+1)-q0))*(1-exp(-S*(q(i+1)-q0)))/M);
end
subplot(2,1,1)
plot(t,q),grid
xlabel('t'),ylabel('q')
subplot(2,1,2)
plot(t,v),grid
xlabel('t'),ylabel('v')

Connectez-vous pour commenter.

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by