How do I solve Time dependent parameter in ODE
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Jyoti Yadav
le 21 Oct 2020
Commenté : Jyoti Yadav
le 22 Oct 2020
Hello, I am facing problem in solving time dependent parameter in ODE solver. In my dydt fuction, I want G parameter to change as t changes in dydt equation. How can i give input of G parameter in dydt equation. I have tried the below code but it shows error.
[t, ymodel] = ode45(@DiffEqs_crytallization, myODE, tspan, y0, options)
where myODE: (G is of the same matrix size as t and I want to use G in my main function @DiffEqs_crystallization))
function [G] = myODE(t, S)
S=[1.0032; 1.1425; 1.323; 1.53; 1.28; 1.22; 1.09; 1.08];
Kg=exp(3.82);
g=1.62;
G=Kg.*((S-1).^g);
function [dydt] = DiffEqs_crytallization(t,y)
for i= 1:N
for j=2:N
extravector1=extravector1+ (y(i)./xmd(j));
end
%dydt(i)=(G./delx(i))*(0-0.5*(y(i+1)+y(i)))+k*(xmd(i+1)-xmd(i))*extravector1;
end
dydt=dydt';
return;
2 commentaires
Réponse acceptée
Alan Stevens
le 21 Oct 2020
Modifié(e) : Alan Stevens
le 21 Oct 2020
Perhaps your code needs to be structured more along the following lines;
tspan = .....
y0 = .....
options = .....
[t, ymodel] = ode45(@myODE, tspan, y0, options);
function dydt = myODE(t, y)
S=[1.0032; 1.1425; 1.323; 1.53; 1.28; 1.22; 1.09; 1.08];
Kg=exp(3.82);
g=1.62;
G=Kg.*((S-1).^g); % If G is a function of t then express that here
delx = ... % Needs to be defined
xmd = .... % Ditto
k = ... % Ditto
extravector1 = ...% Needs to be initialised
for i= 1:N
for j=2:N
extravector1=extravector1+ (y(i)./xmd(j));
end
dydt(i)=(G./delx(i))*(0-0.5*(y(i+1)+y(i)))+k*(xmd(i+1)-xmd(i))*extravector1;
end
dydt=dydt';
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!