NUMERICAL INTEGRATION USING SIMPSONS
    6 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
    mohammed shapique
 le 24 Oct 2020
  
    
    
    
    
    Commenté : mohammed shapique
 le 24 Oct 2020
            This is the program to evalute intergration using Simpsons. There is an error in line 11. 
lambda=1:0.1:2;
gamma1=0.4;
zeta=0.3;
a=0;%lower limit
b=1;%lower limit
n=10;%number of sub-intervals
f1=@(x)((1-x).^((gamma1./zeta)-1)).*(exp(-(lambda.*x)./zeta)); 
h=(b-a)/n;
for k=1:1:n
  x(k)=a+k*h;
  y(k)=f1(x(k));
end
 so=0;se=0;
for k=1:1:n-1
    if rem(k,2)==1
       so=so+y(k);%sum of odd terms
     else
       se=se+y(k); %sum of even terms
    end
end
SOL=h/3*(f1(a)+f1(b)+4*so+2*se);
0 commentaires
Réponse acceptée
  Alan Stevens
      
      
 le 24 Oct 2020
        The problem is that you have many values of lambda.  To deal with this use a loop to do the integration for each value of lambda (this requires f1 to have an extra input parameter):
lambda=1:0.1:2;
gamma1=0.4;
zeta=0.3;
a=0;%lower limit
b=1;%lower limit
n=10;%number of sub-intervals
f1=@(x,p)((1-x).^((gamma1./zeta)-1)).*(exp(-(lambda(p).*x)./zeta)); 
h=(b-a)/n;
for p = 1:numel(lambda)
    for k=1:n
      x(k)=a+k*h;
      y(k)=f1(x(k),p);
    end
     so=0;se=0;
    for k=1:n-1
        if rem(k,2)==1
           so=so+y(k);%sum of odd terms
         else
           se=se+y(k); %sum of even terms
        end
    end
    SOL(p)=h/3*(f1(a,p)+f1(b,p)+4*so+2*se);
end
Plus de réponses (0)
Voir également
Catégories
				En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

