Finding roots using Newton raphson method
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
R Abhinandan
le 27 Oct 2020
Commenté : R Abhinandan
le 27 Oct 2020
Here is my code and my output is a function and not a numerical value as I expected. Can anyone debug this code?
syms f y x df
f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
output:
- (sin((pi*(exp(-3)/(pi/3 + exp(-3)) + 3))/3) + exp(- exp(-3)/(pi/3 + exp(-3)) - 3))/(exp(- exp(-3)/(pi/3 + exp(-3)) - 3) - (pi*cos((pi*(exp(-3)/(pi/3 + exp(-3)) + 3))/3))/3) - exp(-3)/(pi/3 + exp(-3)) - 3
0 commentaires
Réponse acceptée
Alan Stevens
le 27 Oct 2020
Just get rid of the first line, you don't need it
f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
disp(root)
3 commentaires
Alan Stevens
le 27 Oct 2020
This is what I get:
>> f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
disp(root)
-3.0454
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!