Solve system of differntial equation with one variable

1 vue (au cours des 30 derniers jours)
dydt= f(t,y)
t=0:0.0.1:1;
dydt(1) = ( 1.15125859*10^-17)*1i;
dydt(2) = ( 2.77307307*10^-17)*1i;
dydt(3) = ( 8.3780271*10^-17)*1i;
  1 commentaire
Akhilkrishna Panamkoottathil Ramakrishnan
How can i solve these 3 quations . Also i want to find how y1,y2,y3 varies from t=0 to t=1;

Connectez-vous pour commenter.

Réponses (1)

Piotr Balik
Piotr Balik le 3 Jan 2021
One easy way to solve ODE's is using ode45 solver.
Define your derivative function in separate file, just as in your question:
function dydt = myODE(t,y)
dydt(1) = (1.15125859*10^-17)*1i;
dydt(2) = (2.77307307*10^-17)*1i;
dydt(3) = (8.3780271*10^-17)*1i;
end
And call for the solver:
t=0:0.01:1;
initial=[0 0 0]'; %column form
[t,y]=ode45(@myODE,t,initial);
%visualize
plot(t,y)
  4 commentaires
Star Strider
Star Strider le 4 Jan 2021
Change the function to:
function dydt = myODE(t,y)
dydt = zeros(3,1);
dydt(1) = (1.15125859*10^-17)*1i;
dydt(2) = (2.77307307*10^-17)*1i;
dydt(3) = (8.3780271*10^-17)*1i;
end
That will produce a column vector (the default is a row vector), and the code should work.
Akhilkrishna Panamkoottathil Ramakrishnan
The code worked.
But i got a warning, "complex parts of imaginary numbers x and y are ignored ".
Also all the results are.
Actually from the above 3 equations, i want to find y1,y2,y3. where t varies from 0 to1.
Can anyone help?
Thank you

Connectez-vous pour commenter.

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by