data fitting by Integration with variable limit with a unknown parameter.
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Shobha Gondh
le 11 Jan 2021
Commenté : Bjorn Gustavsson
le 16 Jan 2021
I want to fit experimental data with equation:
y = C(1) * 74.826 * (x/T(1))^3 * integration (t^4*exp(t)/(exp(t)-1)^2), 0, T(1)/x) + C(2) * 24.942 * (T(2)/x)^2 * exp(T(2)/x)/(exp(T(2)/x)-1)^2 + C(3) * 24.942 * (T(3)/x)^2 * *exp(T(3)/x)/(exp(T(3)/x)-1)^2
with six unknown parameters: C(1), T(1), C(2), T(2), C(3), T(3).
The integral part is giving error all times. How to write the programm please help.
Thank you.
0 commentaires
Réponse acceptée
Bjorn Gustavsson
le 11 Jan 2021
You can do something like this:
y_fcn = @(CT,x) CT(1) * 74.826 * (x./CT(4)).^3 * integral(t.^4.*exp(t)./(exp(t)-1).^2), 0, CT(4)./x) + ...
CT(2) * 24.942 * (CT(5)./x).^2 .* exp(CT(5)./x)./(exp(CT(5)./x)-1).^2 + CT(3)*24.942*(CT(6)./x).^2.*exp(CT(6)./x)./(exp(CT(6)./x)-1).^2;
err_fcn = @(CT,x,y) sum((y-y_fcn(CT,x)).^2);
CT0 = [1 2 3 4 5 7]; % Some sensible initial guess for C and T, that we concatenate together as CT = [C,T]
CT_best = fminsearch(@(CT) err_fcn(CT,x_obs,y_obs),CT0)
You most likely have to use element-wise operations in the equation for y (I might have missed one or two multiplictions or power-operations). Then it should be fine to use ordinary least-square fitting of the C and T parameters (provided you have enough data-points, and they have the same standard deviation - but I expect you to know this already).
HTH
5 commentaires
Bjorn Gustavsson
le 16 Jan 2021
Ah, I forgot to attach the cumintegral function. Here it is...
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Applications dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!