Two linear equation with absolute value equation

1 vue (au cours des 30 derniers jours)
Murat YAPICI
Murat YAPICI le 13 Jan 2021
Commenté : Murat YAPICI le 13 Jan 2021
Hello,
I have two linear equation and one absolute value equation. Is there a easy way to obtain minimum norm solution ?

Réponse acceptée

Bruno Luong
Bruno Luong le 13 Jan 2021
Modifié(e) : Bruno Luong le 13 Jan 2021
Correct minimum norm solution is
xmin =
90.0000
-40.0000
5.0000
5.0000
normxmin =
98.7421
obtained with this code
s = cell(1,4);
[s{:}] = ndgrid([-1 1]);
s = reshape(cat(5,s{:}),[],4);
fmin = Inf;
xmin = nan(4,1);
for k=1:size(s,1)
sk = s(k,:);
Aeq = [1 1 -1 -1;
1 1 1 1;
sk.*[1 1 -1 -1]];
beq = [40; 60; 120];
A = -diag(sk);
b = zeros(4,1);
[x,f,flag] = quadprog(eye(4), zeros(4,1), ...
A, b, ...
Aeq, beq, ...
[], []);
if flag > 0 && f < fmin
fmin = f;
xmin = x;
end
end
xmin
normxmin = norm(xmin,2)
% Check the constraints
xmin(1)+xmin(2)-xmin(3)-xmin(4)
xmin(1)+xmin(2)+xmin(3)+xmin(4)
abs(xmin(1))+abs(xmin(2))-abs(xmin(3))-abs(xmin(4))

Plus de réponses (1)

Alan Stevens
Alan Stevens le 13 Jan 2021
Do you mean something like this
X0 = [-50 -5];
[X, Fval] = fminsearch(@(X) fn(X),X0);
x2 = X(1); x1 = 50-x2;
x4 = X(2); x3 = 10-x4;
disp([x1 x2 x3 x4])
disp(x1+x2+x3+x4)
disp(x1+x2-x3-x4)
disp(abs(x1)+abs(x2)-abs(x3)-abs(x4))
function F = fn(X)
x2 = X(1); x1 = 50-x2;
x4 = X(2); x3 = 10-x4;
F = norm(abs(x1)+abs(x2)-abs(x3)-abs(x4)-120);
end
  1 commentaire
Murat YAPICI
Murat YAPICI le 13 Jan 2021
Thank you for your answer.
I mean something like this but I want to minimize (Like pseudo inverse). Not .

Connectez-vous pour commenter.

Catégories

En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by