Matlab Numerical integral issue

13 vues (au cours des 30 derniers jours)
fatemeh kamali
fatemeh kamali le 12 Mar 2021
Commenté : Alan Stevens le 15 Mar 2021
Hi everyone.
I'm trying to solve the integral in the code below:
clc
clear all
%Enviroment Properties
f=15e9;
c=2.99792458e8;
lambda=c/f;
mu0=4*pi*1e-7;
eps0=1.0/c^2/mu0;
eta0=sqrt(mu0/eps0);
epsr=5;
omega=2*pi*f;
k0=omega*sqrt(mu0*eps0);
k2=omega*sqrt(mu0*eps0*epsr);
%square patch array properties
l=1.8e-3;
alpha_Ett=1.02*(l^3);
p=2e-3;
N=1/(p^2);
r=0.6956*p;
chieexx=(N*alpha_Ett)/(1-(N*alpha_Ett/(4*r)));
%source and observation points
z0=3e-3;
z=2e-3;
y=0;
for x=5e-6:1e-5:5e-3
pho=sqrt(x.^2+y.^2);
f1 = (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* (((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2))*(k2^2).*chieexx)+ ((k0^2)*(-2i+(sqrt(k0^2-kp.^2)).*chieexx)))))./((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2)).*(k2^2).*chieexx)+ ((k0^2).*(2i+(sqrt(k0^2-kp.^2)).*chieexx)))))) .* exp(1i.*(sqrt(k0^2-kp.^2)).*(z+z0)) );
f2= (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* exp(1i.*(sqrt(k0^2-kp.^2)).*(-z+z0)) );
I1= quadgk(f1,0,inf,'RelTol',1e-8);
I2= quadgk(f2,0,inf,'RelTol',1e-8);
E= (eta0/(4*pi*k0)).*(abs(I1+I2));
semilogy(x,abs(E),'Or')
hold on
end
set(gca,'FontSize',14,'LineWidth',3)
xlabel('x [m]');ylabel('|Ez| [V/m]')
But i get the following warning :
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.2e+03.
The integral may not exist, or it may be difficult to approximate numerically. Increase MaxIntervalCount to
1132 to enable QUADGK to continue for another iteration.
Could you please help me to improve my code.
Thanks in advance

Réponses (1)

Alan Stevens
Alan Stevens le 13 Mar 2021
Modifié(e) : Alan Stevens le 13 Mar 2021
Your problem occurs when the upper limit of the integration exceeds k0. Are you sure the functions are defined correctly for that situation?
If the upper limit is taken as k0, the following code
%Enviroment Properties
f=15e9;
c=2.99792458e8;
lambda=c/f;
mu0=4*pi*1e-7;
eps0=1.0/c^2/mu0;
eta0=sqrt(mu0/eps0);
epsr=5;
omega=2*pi*f;
k0=omega*sqrt(mu0*eps0);
k2=omega*sqrt(mu0*eps0*epsr);
%square patch array properties
l=1.8e-3;
alpha_Ett=1.02*(l^3);
p=2e-3;
N=1/(p^2);
r=0.6956*p;
chieexx=(N*alpha_Ett)/(1-(N*alpha_Ett/(4*r)));
%source and observation points
z0=3e-3;
z=2e-3;
y=0;
%x = 5e-6:1e-4:5e-3;
x = logspace(-5.301,-2.301);
lo = 0; hi = k0; % Integration limits
for i = 1:numel(x)
pho=sqrt(x(i).^2+y.^2);
f1 = (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* (((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2))*(k2^2).*chieexx)+ ((k0^2)*(-2i+(sqrt(k0^2-kp.^2)).*chieexx)))))./((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2)).*(k2^2).*chieexx)+ ((k0^2).*(2i+(sqrt(k0^2-kp.^2)).*chieexx)))))) .* exp(1i.*(sqrt(k0^2-kp.^2)).*(z+z0)) );
f2= (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* exp(1i.*(sqrt(k0^2-kp.^2)).*(-z+z0)) );
I1= quadgk(f1,lo,hi);
I2= quadgk(f2,lo,hi);
E(i)= (eta0/(4*pi*k0)).*(abs(I1+I2));
hold on
end
semilogy(x,abs(E),'Or')
set(gca,'FontSize',14,'LineWidth',3)
xlabel('x [m]');ylabel('|Ez| [V/m]')
produces this result
  2 commentaires
fatemeh kamali
fatemeh kamali le 15 Mar 2021
Thanks for your answer Alan Stevens! Yes i am sure about the definition of the functions.
Alan Stevens
Alan Stevens le 15 Mar 2021
Then it looks like the only sensible numerical upper limit for your integrals is k0.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by